Биохимия что это


Биохимия - это... Основы биохимии

Биомасса нашей планеты складывается из представителей всех царств живой природы: животных, растений, грибов, вирусов, бактерий. Численность представителей каждого царства настолько велика, что остается только удивляться, как мы все помещаемся на Земле. Но, несмотря на такое многообразие, все живое на планете объединяет несколько основных особенностей.

Общность всего живого

Доказательства складываются из нескольких основных особенностей живых организмов:

  • необходимости в питании (потреблении энергии и преобразовании ее внутри организма);
  • потребности в дыхании (биологическом окислении);
  • способности к размножению;
  • росте и развитии в течение жизненного цикла.

Любой из перечисленных процессов представлен в организме массой химических реакций. Ежесекундно внутри любого живого существа, а тем более человека, происходят сотни реакций синтеза и распада органических молекул. Структура, особенности химического воздействия, взаимодействие друг с другом, синтез, распад и построение новых структур молекул органического и неорганического строения - все это предмет изучения большой, интересной и разнообразной науки. Биохимия - это молодая прогрессивная область знания, изучающая все химические процессы, происходящие внутри живых существ.

Объектом изучения биохимии являются только живые организмы и все происходящие в них процессы жизнедеятельности. А конкретно - химические реакции, происходящие при поглощении пищи, выделении продуктов жизнедеятельности, росте и развитии. Так, основы биохимии составляет изучение:

  1. Неклеточных форм жизни - вирусов.
  2. Прокариотических клеток бактерий.
  3. Высших и низших растений.
  4. Животных всех известных классов.
  5. Организма человека.

При этом сама биохимия - это наука достаточно молодая, возникшая только с накоплением достаточного количества знаний о внутренних процессах в живых существах. Ее возникновение и обособление датируется второй половиной XIX века.

Современные разделы биохимии

На современном этапе развития биохимия включает в себя несколько основных разделов, которые представлены в таблице.

Раздел

Определение

Объект изучения

Динамическая биохимия

Изучает химические реакции, лежащие в основе взаимопревращения молекул внутри организма

Метаболиты - простые молекулы и их производные, образующиеся в результате обмена энергии; моносахариды, жирные кислоты, нуклеотиды, аминокислоты

Статическая биохимия

Изучает химический состав внутри организмов и структуру молекул

Витамины, белки, углеводы, нуклеиновые кислоты, аминокислоты, нуклеотиды, липиды, гормоны

Биоэнергетика

Занимается изучением поглощения, накопления и преобразования энергии в живых биологических системах

Один из разделов динамической биохимии

Функциональная биохимия

Изучает подробности всех физиологических процессов организма

Питание и пищеварение, дыхание, регуляция кислотно-щелочного баланса, мышечные сокращения, проведение нервного импульса, регуляция печени и почек, действие иммунной и лимфатической систем и так далее

Медицинская биохимия (биохимия человека)

Изучает процессы метаболизма в организме людей (в здоровых организмах и при заболеваниях)

Эксперименты на животных позволяют вывести чистые культуры патогенных бактерий, вызывающих заболевания у людей, и найти способы борьбы с ними

Таким образом, можно сказать, что биохимия - это целый комплекс маленьких наук, которые охватывают все многообразие сложнейших внутренних процессов живых систем.

Дочерние науки

С течением времени накопилось настолько много различных знаний и сформировалось столько научных навыков обработки результатов исследований, выведения бактериальных колоний, репликации ДНК и РНК, встраивания заведомо известных участков генома с заданными свойствами и так далее, что появилась необходимость в дополнительных науках, которые являются дочерними для биохимии. Это такие науки, как:

  • молекулярная биология;
  • генная инженерия;
  • генная хирургия;
  • молекулярная генетика;
  • энзимология;
  • иммунология;
  • молекулярная биофизика.

Каждая из перечисленных областей знаний имеет массу достижений в изучении биопроцессов в живых биологических системах, поэтому является очень важной. Все они относятся к наукам XX века.

Причины интенсивного развития биохимии и дочерних наук

В 1958 г. Корана открыл ген и его структуру, после чего в 1961 г. был расшифрован генетический код. Затем было установлено строение молекулы ДНК - двухцепочечная структура, способная к редупликации (самовоспроизведению). Были описаны все тонкости процессов метаболизма (анаболизм и катаболизм), изучена третичная и четвертичная структура белковой молекулы. И это далеко не полный список грандиозных по значимости открытий XX века, которые и составляют основу биохимии. Все эти открытия принадлежат биохимикам и самой науке как таковой. Поэтому предпосылок для ее развития множество. Можно выделить несколько современных причин ее динамичности и интенсивности в становлении.

  1. Выявлены основы большинства химических процессов, происходящих в живых организмах.
  2. Сформулирован принцип единства в большинстве физиологических и энергетических процессов для всех живых существ (например, они одинаковы у бактерий и человека).
  3. Медицинская биохимия позволяет получить ключ к лечению массы различных сложных и опасных заболеваний.
  4. При помощи биохимии стало возможным подобраться к решению самых глобальных вопросов биологии и медицины.

Отсюда вывод: биохимия - это прогрессивная, важная и очень широко спектральная наука, позволяющая найти ответы на многие вопросы человечества.

Биохимия в России

В нашей стране биохимия является такой же прогрессивной и важной наукой, как и в целом мире. На территории России действуют Институт биохимии им. А. Н. Баха РАН, Институт биохимии и физиологии микроорганизмов им. Г. К. Скрябина РАН, НИИ биохимии СО РАН. Нашим ученым принадлежит большая роль и множество заслуг в истории развития науки. Так, например, был открыт метод иммуноэлектрофареза, механизмы гликолиза, сформулирован принцип комплементарности нуклеотидов в структуре молекулы ДНК и сделан ряд других важных открытий. В конце XIX и начале XX в. в основном были сформированы не целые институты, а кафедра биохимии в некоторых из вузов. Однако вскоре появилась необходимость расширить пространство для изучения данной науки в связи с ее интенсивным развитием.

Биохимические процессы растений

Биохимия растений неразрывно связана с физиологическими процессами. В целом, предметом изучения биохимии и физиологии растений является:

  • жизнедеятельность растительной клетки;
  • фотосинтез;
  • дыхание;
  • водный режим растений;
  • минеральное питание;
  • качество урожая и физиология его формирования;
  • устойчивость растений к вредителям и неблагоприятным условиям окружающей среды.

Значение для сельского хозяйства

Знание глубинных процессов биохимии в растительных клетках и тканях позволяют повышать качество и количество урожая культурных сельскохозяйственных растений, являющихся массовыми производителями важных продуктов питания для всего человечества. Кроме того, физиология и биохимия растений позволяют находить пути решения проблем заражения вредителями, устойчивости растений к неблагоприятным условиям среды, дают возможность повысить качество продукции растениеводства.

Что такое биохимия?

Пациенты больниц и их родственники довольно часто интересуются, что такое биохимия. Данное слово может употребляться в двух значениях: как наука и как обозначение биохимического анализа крови. Рассмотрим каждое из них.

Биохимия как наука

Биологическая или физиологическая химия – биохимия – это наука, которая изучает химический состав клеток любых живых организмов. В ходе ее изучения также рассматриваются закономерности, в соответствии с которыми происходят все химические реакции в живых тканях, обеспечивающие жизнедеятельность организмов.

Смежными с биохимией научными дисциплинами являются молекулярная биология, органическая химия, клеточная биология и др. Слово «биохимия» можно применить, к примеру, в предложении: «Биохимия как отдельная наука сформировалась примерно 100 лет назад».

А вот узнать поподробнее о схожей науке вы сможете, если ознакомитесь с нашей статьей Что такое химия.

Биохимия крови

Биохимический анализ крови подразумевает лабораторное исследование разнообразных показателей в крови, анализы при этом берут из вены (процесс венепункции). По результатам исследования можно оценить состояние организма, а конкретно органов и систем. Подробнее об этом анализе можно узнать из нашего раздела Биохимия крови.

Благодаря биохимии крови можно выяснить, как работают почки, печень, сердце, а также определить ревматический фактор, водно-солевой баланс и пр.

Что такое биохимия, и что она изучает :

В этой статье мы ответим на вопрос, что такое биохимия. Здесь мы рассмотрим определение этой науки, ее историю и методы исследования, уделим внимание некоторым процессам и определим ее разделы.

Введение

Чтобы ответить на вопрос о том, что такое биохимия, достаточно сказать, что это наука, посвященная химическому составу и процессам, протекающим внутри живой клетки организма. Однако она имеет множество составляющих, узнав которые, можно более конкретизировано составить представление о ней.

В некоторых временных эпизодах XIX века терминологическая единица «биохимия» стала впервые использоваться. Однако была введена в научные круги лишь в 1903 году химиком из Германии - Карлом Нейбергом. Эта наука занимает промежуточную позицию между биологией и химией.

Исторические факты

Ответить на вопрос четко, что такое биохимия, человечество смогло лишь около ста лет назад. Несмотря на то что общество использовало биохимические процессы и реакции еще в далекой древности, оно не подозревало о наличии их истинной сути.

Одними из самых отдаленных примеров может служить изготовление хлеба, виноделие, сыроварение и т. д. Ряд вопросов о целебных свойствах растений, проблем со здоровьем и т. п. заставил человека вникнуть в их основу и природу деятельности.

Развитие общего набора направлений, которые в конечном итоге привели к созданию биохимии, наблюдается уже в древних временах. Ученый-врач из Персии в десятом веке написал книгу о канонах врачебной науки, где смог подробно изложить описание различных лекарственных веществ. В XVII веке ван Гельмонт предложил термин «фермента» как единицы реагента химической природы, участвующей в пищеварительных процессах.

В XVIII веке, благодаря работам А.Л. Лавуазье и М.В. Ломоносова, был выведен закон сохранения массы вещества. В конце того же века было определено значение кислорода в процессе дыхания.

В 1827 году наука позволила создать разделение молекул биологической природы на соединения жиров, белков и углеводов. Этими терминами пользуются до сих пор. Годом позже в работе Ф. Велера было доказано, что вещества живых систем могут синтезироваться искусственными способами. Еще одним важным событием было изготовление и составление теории строения органических соединений.

Основы биохимии формировались многие сотни лет, но приняли четкое определение в 1903 году. Эта наука стала первой дисциплиной из разряда биологических, которая обладала собственной системой математических анализов.

Спустя 25 лет, в 1928 году, Ф. Гриффит провел эксперимент, целью которого было исследование механизма трансформации. Ученый заражал мышей пневмококками. Он убивал бактерии одного штамма и добавлял их к бактериям другого. Исследование показало, что процесс очистки болезнетворных агентов привел к образованию нуклеиновой кислоты, а не белка. Перечень открытий пополняется и в настоящее время.

Наличие смежных дисциплин

Биохимия – это отдельная наука, однако ее созданию предшествовал активный процесс развития органического раздела химии. Главное отличие заключается в объектах исследования. В биохимии рассматриваются только те вещества или процессы, которые могут протекать в условиях живых организмов, а не за их пределами.

В конечном итоге биохимия включила понятие молекулярной биологии. Отличаются они между собой преимущественно методами действий и предметам, которые они изучают. В настоящее время терминологические единицы «биохимия» и «молекулярная биология» стали использоваться в качестве синонимов.

Наличие разделов

На сегодняшний день биохимия включает в себя ряд исследовательских направлений, среди которых:

  • Раздел статической биохимии - наука о химическом составе живых существ, структур и молекулярном разнообразии, функций и т. д.

  • Существует ряд разделов, изучающий биологические полимеры белковых, липидных, углеводных, аминокислотных молекул, а также нуклеиновые кислоты и сам нуклеотид.

  • Биохимия, изучающая витамины, их роль и форму воздействия на организм, возможные нарушения в процессах жизнедеятельности при нехватке или чрезмерном количестве.

  • Гормональная биохимия – наука, изучающая гормоны, их биологический эффект, причины недостатка или переизбытка.

  • Наука об обмене веществ и его механизмах – динамический раздел биохимии (включает в себя биоэнергетику).

  • Исследования молекулярной биологии.

  • Функциональная составляющая биохимии изучает явление химических превращений, отвечающих за функциональность всех компонентов организма, начиная с тканей, а заканчивая всем телом.

  • Медицинская биохимия – раздел о закономерностях обмена веществ между структурами организма под влиянием заболеваний.

Также существуют ответвления биохимии микроорганизмов, человека, животных, растений, крови, тканей и т. д.

Средства исследования и решения проблем

Методы биохимии основываются на фракционировании, анализе, детальном изучении и рассмотрении структуры как отдельного компонента, так и целого организма или его вещества. Большинство из них формировались в течение XX века, а самую широкую известность получила хроматография - процесс центрифугирования и электрофорез.

В конце XX века биохимические методы начали все чаще и чаще находить свое применение в молекулярных и клеточных разделах биологии. Была определена структура всего генома человеческой ДНК. Это открытие дало возможность узнать о существовании огромного ряда веществ, в частности различных белков, которые не обнаруживались при очистке биомассы, в связи с их чрезвычайно малым содержанием в веществе.

Геномика поставила под сомнение огромное количество биохимических знаний и обусловила развитие изменений в ее методологии. Появилось понятие компьютерного виртуального моделирования.

Химическая составляющая

Физиология и биохимия тесно связаны между собой. Это объясняется зависимостью нормы протекания всех физиологических процессов с содержанием различного ряда химических элементов.

В природе можно встретить 90 компонентов периодической таблицы химических элементов, но для жизни необходимо около четверти. Во многих редких компонентах наш организм вовсе не нуждается.

Различное положение таксона в иерархической таблице живых существ обуславливает разную потребность в наличии тех или иных элементов.

99 % человеческой массы состоит из шести элементов (С, Н, N, O, F, Ca). Помимо основного количества данных видов атомов, образующих вещества, нам необходимы еще 19 элементов, но в малых или микроскопических объемах. Среди них имеются: Zn, Ni, Ma, K, Cl, Na и другие.

Биомолекула белка

Главные молекулы, изучением которых занимается биохимия, относятся к углеводам, белкам, липидам, нуклеиновым кислотам, а также внимание этой науки сосредоточенно на их гибридах.

Белки - соединения, обладающие крупными размерами. Они образуются посредством связывания цепочек из мономеров – аминокислот. Большая часть живых существ получает белки при помощи синтеза двадцати видов этих соединений.

Эти мономеры отличаются между собой структурой радикальной группы, которая играет огромную роль в ходе свертывания белка. Цель этого процесса заключается в образовании трехмерной структуры. Соединяются между собой аминокислоты при помощи образования пептидных связей.

Отвечая на вопрос о том, что такое биохимия, нельзя не упомянуть такие сложные и многофункциональные биологические макромолекулы, как белки. Они имеют больше задач, чем полисахариды или нуклеиновые кислоты, которые необходимо выполнить.

Некоторые белки представлены ферментами и занимаются катализом различных реакции биохимической природы, что очень важно для обмена веществ. Другие белковые молекулы могут выполнять роль сигнальных механизмов, образовывать цитоскелеты, участвовать в иммунной защите и т. д.

Некоторые виды белков способны образовывать небелковые биомолекулярные комплексы. Вещества, созданные путем слияния белков с олигосахаридами, позволяют существовать таким молекулам, как гликопротеины, а взаимодействие с липидами приводит к появлению липопротеинов.

Молекула нуклеиновой кислоты

Нуклеиновые кислоты представлены комплексами макромолекул, состоящих из полинуклеотидного набора цепочек. Их главное функциональное предназначение заключается в кодировке наследственной информации. Синтез нуклеиновый кислоты происходит благодаря наличию мононуклеозидтрифосфатных макроэнергетических молекул (АТФ, ТТФ, УТФ, ГТФ, ЦТФ).

Самые широко распространенные представители таких кислот - это ДНК и РНК. Эти структурные элементы находятся в составе каждой живой клетки, от археи, до эукариотов, и даже в вирусах.

Молекула липида

Липиды – это молекулярные вещества, составленные глицерином, к которым посредством сложно-эфирных связей прикрепляются жирные кислоты (от 1 до 3). Такие вещества делят на группы в соответствие с длиной углеводородной цепочки, а также обращают внимание на насыщенность. Биохимия воды не позволяет ей растворять в себе соединения липидов (жиров). Как правило, такие вещества растворяются в полярных растворах.

Основные задачи липидов заключаются в обеспечении энергией организма. Некоторые входят в состав гормонов, могут выполнять сигнальную функцию или переносить липофильные молекулы.

Молекула углевода

Углеводы – это биополимеры, образованные путем соединения мономеров, которые в данном случае представлены моносахаридами, такими как, например, глюкоза или фруктоза. Изучение биохимии растений позволило человеку определить, что основная часть углеводов содержится именно в них.

Свое применение эти биополимеры находят в структурной функции и предоставлении энергетических ресурсов организму или клетке. У растительных организмов главным запасающим веществом служит крахмал, а у животных – гликоген.

Течение цикла Кребса

Существует в биохимии цикл Кребса – явление, в ходе которого преобладающее количество эукариотических организмов получают большую часть энергии, расходуемой на процессы окисления поглощаемой пищи.

Наблюдать его можно внутри клеточных митохондрий. Образуется посредством нескольких реакций, в ходе которых высвобождаются запасы «спрятанной» энергии.

В биохимии цикл Кребса – это важный фрагмент общего дыхательного процесса и вещественного обмена внутри клеток. Цикл был открыт и изучен Х. Кребсом. За это ученый получил Нобелевскую премию.

Данный процесс также называют системой для переноса электронов. Это связано с сопутствующим переходом АТФ в АДФ. Первое соединение, в свою очередь, занимается обеспечением метаболических реакций при помощи выделения энергии.

Биохимия и медицина

Биохимия медицины представлена нам в виде науки, охватывающей множество областей биологических и химических процессов. В настоящее время существует целая отрасль в образовании, которая готовит специалистов для данных исследований.

Здесь изучают все живое: от бактерии или вируса до человеческого организма. Наличие специальности биохимика дает субъекту возможность следить за постановкой диагноза и анализировать лечение, применимое к индивидуальной единице, делать выводы и т. д.

Чтобы подготовить высококвалифицированного эксперта в этой области, нужно обучить его естественным наукам, медицинским основам и биотехнологическим дисциплинам, проводят множество тестов по биохимии. Также студенту дают возможность практически применять свои знания.

вузы биохимии в настоящее время приобретают все большую популярность, что обуславливается быстрым развитием этой науки, ее важностью для человека, востребованностью и т. д.

Среди самых известных учебных заведений, где готовят специалистов этой отрасли науки, самые популярные и значимые: МГУ им. Ломоносова, ПГПУ им. Белинского, МГУ им. Огарева, Казанский и Красноярский государственные университеты и другие.

Перечень документов, необходимых для поступления в подобные вузы не отличается от списка для зачисления в другие высшие учебные заведения. Биология и химия являются основными предметами, которые необходимо сдавать при поступлении.

Наука биохимия

Биохимия - это наука, изучающая качественный и количественный состав, а также пути, способы, закономерности, биологическую и физиологическую роль превращения вещества, энергии и информации в живом организме. Формирование биологической химии как самостоятельной дисциплины в системе биологических наук было длительным и сложным процессом. Современная биохимия сформировалась на рубеже ХIХ и ХХ вв. в недрах органической химии и физиологии, поэтому в ХIХ в. она называлась физиологической химией. Термин биохимия был предложен в 1858 году австрийским врачом и химиком Винцентом Клетцинским. История биохимии отражает сложный путь познания человеком окружающего органического мира, истоки которого уходят во времена античности. В те времена гениальные пророческие идеи причудливо переплетались с наивными представлениям об окружающем мире. Так, например, Аристотель полагал, что живые существа образуются из сочетания пассивного, не имеющей жизни, начала - «материи» с активным началом - «формой», которая формирует тело и поддерживает в нем жизнь. В последующем неоплатоники развивая эти идеи сформулировали понятие о «жизненной силе», «животворящем духе» и т.д., которые в различных модификациях существовали и в средние века. В VII – X веках в Европе с развитием алхимии стал накапливаться материал о составе сложных органических соединений. Эпоха Возрождения характеризуется динамическим восприятием окружающего мира, которое превратило науку из ритуально-магической в открытую. Наука рассматривала человеческое тело как сложную механическую машину. Наш выдающийся современник, английский философ и историк науки Дж. Бернал так характеризует ту эпоху: «... врачи свободно общались с мастерами-художниками, математиками, астрономами и инженерами. По сути дела, многие из них занимались некоторыми из этих профессий. Так, например, Коперник получил образование и практиковал как врач...». Именно это привело науку к новой ступени - живое стали оценивать химическими категориями. В XVI - XVII веках получила развитие ятрохимия (врачебная химия), важнейшим представителем которой был Парацельс (1493-1541), считавший, что в основе всех заболеваний лежат нарушения хода химических процессов в организме, поэтому лечить их надо тоже химическими веществами. Ятрохимия много дала практической медицине и способствовала ее сближению с химией. Середина ХVII - конец ХVIII вв является эмпирическим периодом развития органической химии которая по определению великого шведского химика Й. Берцелиуса была химией «растительных и животных веществ». За это время произошло накопление огромного фактического материала, но еще не возникло теоретических, обобщающих представлений. Практические потребности человеческой деятельности (получение из природного сырья лекарств, масел, смол, красителей и т.д.) явились основной причиной, побуждающей к изучению органических соединений. Совершенствование экспериментальных методов способствовало выделению индивидуальных органических соединений из растений (щавелевая, яблочная, лимонная и др. кислоты) и продуктов жизнедеятельности животных организмов (мочевина, мочевая и гиппуровая кислоты). Следующий период - аналитический (конец ХVIII - середина ХIХ вв. - ознаменован исследованиями по установлению состава веществ, в результате которых стало очевидно, что все органические соединения содержат углерод. Вот лишь некоторые достижения этого периода: В 1828 г. Ф. Вёлер впервые синтезировал мочевину, открыв тем самым эпоху органического синтеза. В 1839 г Ю. Либих установил, что в состав пищи входят белки, жиры и углеводы. В 1845 г. Г. Кольбе синтезировал уксусную кислоту В 1854 г М. Бертло синтезировал жиры. В 1861 г А.М. Бутлеров синтезировал углеводы. Подводя итоги развития биохимии в ХIХ в. отметим, что основными факторами ее формирования было развитие химии важнейших природных соединений - липидов, углеводов и особенно белков, первые успехи энзимологии, разработка основных положений о многоступенчатости обмена веществ и роли ферментов в этих процессах. Биологическая химия того времени ставила своей главной целью изучение методами химии не суммарных процессов обмена веществ, а превращение в организме каждого отдельного соединения и разработка представлений о всех деталях обменных процессов в совокупности. Наиболее интенсивно биохимия стала развивать в ХХ веке и особенно в последние десятилетия. В первой половине ХХ в. были сделаны важнейшие открытия, которые позволили построить общую схему обмена веществ, установить природу ферментов и исследовать их важнейшие свойства, значительно расширить знания об основных биологически активных соединениях. В 40-50-е годы интенсивно развивались и усовершенствовались методы биохимических исследований определившие в последующие десятилетия формирование отдельных направлений биохимии ставших самостоятельными науками - биоорганической химии, молекулярной биологии, молекулярной генетики, биотехнологии и др. В последующем, при рассмотрении отдельных разделов биохимии, мы будем касаться их исторических аспектов, сейчас же кратко рассмотрим основные исторические этапы развития отечественной биологической химии. История развития отечественной биохимии. Наши соотечественники внесли большой вклад в развитие биохимии. Так, первый в России учебник физиологической химии издан еще в 1847 г. А.И. Ходневым. Основоположником отечественной биохимии является профессор Александр Яковлевич Данилевский (1839-1923), который в 1863 г. создал первую кафедру биохимии в Казанском университете, создал первую русскую школу биохимиков. Занимаясь исследованием белков, он впервые постулировал идею пептидной связи в белке, высказал идеи об обратимости действия ферментов, на основе чего впервые осуществил синтез белковоподобных веществ - пластеидов, разработал методы очистки ферментов путем адсорбции с последующей элюцией и т.д. В 1891 г. М.В. Ненцким (1847-1901) организована первая биохимическая лаборатория в Институте экспериментальной медицины в Петербурге, в которой проводились работы по изучению механизма синтеза мочевины, химического состава гемина и хлорофилла, исследованию обмена белков. К числу наиболее значимых достижений отечественной биохимии следует отнести открытие в 1880 г. Н.И. Луниным витаминов, создание А.Н. Бахом в 1896 г. теории биологического окисления (активирования кислорода), открытие в 1899г. И.П. Павловым и Н.П. Шеповальниковым проферментов, разработка метода хроматографии М.С. Цветом в 1903 г., создание В.И. Палладиным в 1912 г. теории биологического окисления (активирования водорода) и др. Советский этап развития биохимии связан с именем Алексея Николаевича Баха (1859-1946), который организовал в 1921 г. в Москве Научно-исследовательский биохимический институт Наркомздрава, а в 1935 г. он возглавил переведенный из Ленинграда в Москву Институт биохимии АН СССР, названный впоследствии его именем. На протяжении многих лет Институт биохимии АН СССР им. А.Н. Баха возглавлял акад. А.И. Опарин - автор первой теории происхождения жизни на Земле. На базе этого института в 1959 г. создан Институт молекулярной биологии АН СССР получивший впоследствии имя его основателя - акад. В.А. Энгельгардта - автора классических работ по окислительному фосфорилированию, механохимии мышц, углеводному обмену и др. Отечественная наука по праву гордится пионерскими работами акад. Ю.А. Овчинникова в области мембранной биологии, акад. А.С. Спирина по молекулярным механизмам биосинтеза белка, акад. В.П. Скулачева по биоэнергетике. Широко за рубежами нашего отечества известны работы по биохимии витаминов белорусской школы биохимиков, возглавляемой акад. Ю.М. Островским. Большим авторитетом в стране и за рубежом пользуются работы украинских биохимиков в области нейрохимии и биохимии витаминов (акад. А.В. Палладин), биохимии белкового, липидного обмена, возрастной биохимии. Предмет и задачи биохимии. Методы биохимических исследований. Биологическая химия решает большое число задач. Поскольку в основе жизнедеятельности здорового организма лежит сложнейшая совокупность биохимических реакций, то при патологии нормальное течение биохимических реакций, как правило, нарушается. В связи с чем возникает необходимость исследовать состояние обмена веществ не только в норме, но и при патологии. Задача врача заключается в том, чтобы предотвратить развитие патологического процесса в организме и ее решение возможно лишь при своевременной и правильной диагностике, назначении адекватного лечения, которое возможно лишь в том случае, если врач понимает сущность происходящего в организме. При назначении в процессе лечения различных медикаментов, которые включаются в метаболические процессы, необходимо четко представлять механизм их действия и предвидеть возможные последствия этого лечения. 1. Познание молекулярных механизмов физиологических, генетических и иммунологических процессов жизнедеятельности в норме и при патологии и действии на организм различных факторов. 2. Совершенствование методов профилактики, диагностики и лечения заболеваний. 3. Разработка новых лекарственных средств, нормализующих обменные процессы. 4. Разработка научных основ, рационального, сбалансированного питания, здорового образа жизни. 5. Разработка научных основ Исторически сложились три направления биохимии: 1. Статическая биохимия - исследует качественные и количественный химический состав живых организмов. 2. Динамическая биохимия - изучает совокупность превращений веществ, энергии и информации в живом организме. 3. Функциональная биохимия - изучает химическую основу функций тканей, органов, систем органов и межорганных взаимоотношений. Совершенно очевидно, что это деление весьма условно, поскольку все эти направления взаимно проникают друг в друга и лишь в совокупности они дают возможность приблизиться к пониманию сущности живого организма. В зависимости от объекта исследования или направления исследования биохимию подразделяют на такие разделы как: - общая биохимия которая изучает общие вопросы химических основ жизнедеятельности различных организмов - бионеорганическая химия изучающая роль и значение в процессе жизнедеятельности комплексов неорганических ионов с органическими соединениями - биоорганическая химия исследующая физико-химические основы функционирования живых систем - биохимия человека и животных, (растений, микроорганизмов) - техническая биохимия, изучающая состав пищевых продуктов, химическую основу технологических процессов их хранения, переработки и т.д. - сравнительная (эволюционная) биохимия которая исследует биохимические процессы в сравнительном (эволюционном) аспекте - радиационная биохимия изучает биохимические основы радиационного повреждения и способы его профилактики в живой организме - медицинская (клиническая) биохимия исследует биохимические основы патологических процессов.

В недрах биохимии на стыке биологии, медицины, химии, физики, математики, кибернетики сформировалась новая наука - физико-химическая биология, объединяющая цели и задачи всех вышеназванных направлений биохимии.

Общепринятые сокращения в биохимии

АДФ

АМФ

АТФ

АХАТ

ГАМК

ГМГ-КоА

ГМФ

ГТФ

ДНК

ДОФА

КоА

ЛПВП

ЛПНП

ЛПОНП

ЛППП

ЛХАТ

мРНК

мяРНП

РНК

рРНК

тРНК

ТДФ

УДФ

УТФ

ФИФг

ц АМФ

ЩУК

FAD

FADh3

FMN

FMNh3

Hb

HbA

HbF

Hb(02)4

HbS

NAD+

NADH

NADP+

NADPH

PAPS

Р

PP

— аденозиндифосфат

— аденозин монофосфат

— аденозинтрифосфат

— атдалхолестеролацилтрансфераза  

— у-аминомасляная кислота -v;-

— З-гйлрокси-3-метилглутарил-кофермент А

— гуанозинмонофосфат

— гуанозинтрифосфат

— дезоксирибонуклеиновая кислота

— диоксифенилаланин

— кофермент (коэнзим) А

— липопротеины высокой плотности

— липопротеины низкой плотности

— липопротеины очень низкой плотности

— липопротеины промежуточной плотности

— лецитинхолестерола цилтра н сфераза

— матричная РНК

— малые ядерные рибонуклеопротсины

— рибонуклеиновая кислота

— рибосомная РНК

— транспортная РНК

—тиаминдифосфат

— уридиндифосфат

— уридинтрифосфат

— фосфатидилинозитол-4,5-бисфосфат

— циклический аденозинмонофосфат

— щавелевоуксусная кислота (оксалоацетат)

— окисленный флавинадениндинуклеотид

— восстановленный флавинадениндинуклеотид

— окисленный флавинмсшонуклеотид

— восстановленный флавинмононуклеотид

— гемоглобин

— нормальный гемоглобин взрослого человека

— фетальный гемоглобин

— оксигемоглобин

— гемоглобин при серповидно-клеточной анемии

— окисленный никотинамидадениндинуклеотид

— восстановленный никотинамидадениндинуклеотид

— окисленный никотинамидадениндинуклеотидфосфат

— восстановленный никотмиамидадениндинуклеотидфосфат

— 3'-фосфоаденозин-5'-фосфосульфат

— фосфат неорганический

— пирофосфат неорганический.

Биохимия витаминов, гормонов, костной ткани, мышечной ткани, нервной ткани, слюны

Биохимические исследования при заболеваниях печени

Биохимические свойства бактерий Биохимический состав тканей зуба 


Смотрите также