Миллимоль на литр
Перевести единицы: микромолярный [мкМ или 0.000001М] миллимоль на литр [ммоль/л] • Гидравлика и гидромеханика — жидкости • Конвертер молярной концентрации • Компактный калькулятор
Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисленияКонвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер паропроницаемости и скорости переноса параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева
1 микромолярный [мкМ или 0.000001М] = 0,001 миллимоль на литр [ммоль/л]
Общие сведения
Факторы, влияющие на молярную концентрацию
Единицы
Как найти молярную концентрацию
Примеры
Применение
В фармацевтике
Общие сведения
Один моль — это количество вещества, в котором содержится такое же число атомов как в 12 граммах углерода-12, то есть 6×10²³ атомов.
Концентрацию раствора можно измерять разными способами, например как отношение массы растворенного вещества к общему объему раствора. В этой статье мы рассмотрим молярную концентрацию, которую измеряют как отношение между количеством вещества в молях к общему объему раствора. В нашем случае вещество — это растворимое вещество, а объем мы измеряем для всего раствора, даже если в нем растворены другие вещества. Количество вещества — это число элементарных составляющих, например атомов или молекул вещества. Так как даже в малом количестве вещества обычно большое число элементарных составляющих, то для измерения количества вещества используют специальные единицы, моли. Один моль равен числу атомов в 12 г углерода-12, то есть это приблизительно 6×10²³ атомов.
Использовать моли удобно в случае, если мы работаем с количеством вещества настолько малым, что его количество легко можно измерить домашними или промышленными приборами. Иначе пришлось бы работать с очень большими числами, что неудобно, или с очень маленьким весом или объемом, которые трудно найти без специализированного лабораторного оборудования. Чаще всего при работе с молями используют атомы, хотя возможно использовать и другие частицы, например молекулы или электроны. Следует помнить, что если используются не атомы, то необходимо это указать. Иногда молярную концентрацию также называют молярностью.
Следует не путать молярность с моляльностью. В отличии от молярности, моляльность — это отношение количества растворимого вещества к массе растворителя, а не к массе всего раствора. Когда растворитель — вода, а количество растворимого вещества по сравнению с количеством воды мало, то молярность и моляльность похожи по значению, но в остальных случаях они обычно отличаются.
Вес одного моля разных веществ. Его можно найти с помощью таблицы Менделеева.
Факторы, влияющие на молярную концентрацию
Молярная концентрация зависит от температуры, хотя эта зависимость сильнее для одних и слабее для других растворов, в зависимости от того, какие вещества в них растворены. Некоторые растворители при повышении температуры расширяются. В этом случае, если растворенные в этих растворителях вещества не расширяются вместе с растворителем, то молярная концентрация всего раствора понижается. С другой стороны, в некоторых случаях с повышением температуры растворитель испаряется, а количество растворимого вещества не меняется — в этом случае концентрация раствора увеличится. Иногда происходит наоборот. Иногда изменение температуры влияет на то, как растворяется растворимое вещество. Например, часть или все растворимое вещество перестает растворяться, и концентрация раствора уменьшается.
Единицы
Молярную концентрацию измеряют в молях на единицу объема, например молях на литр или молях на кубический метр. Моли на кубический метр — это единица СИ. Молярность можно также измерять, используя и другие единицы объема.
Как найти молярную концентрацию
Чтобы найти молярную концентрацию необходимо знать количество и объем вещества. Количество вещества можно вычислить, используя химическую формулу этого вещества и информацию об общей массе этого вещества в растворе. То есть, чтобы узнать количество раствора в молях, узнаем из таблицы Менделеева атомную массу каждого атома в растворе, а потом разделим общую массу вещества на общую атомную массу атомов в молекуле. Перед тем, как складывать вместе атомную массу следует убедиться, что мы умножили массу каждого атома на количество атомов в молекуле, которую мы рассматриваем.
Можно производить вычисления и в обратном порядке. Если известна молярная концентрация раствора и формула растворимого вещества, то можно узнать количество растворителя в растворе, в молях и граммах.
Примеры
Найдем молярность раствора из 20 литров воды и 3-х столовых ложек соды. В одной столовой ложке — примерно 17 грамм, а в трех — 51 грамм. Сода — это гидрокарбонат натрия, формула которого — NaHCO₃. В этом примере мы будем использовать атомы для вычисления молярности, поэтому найдем атомную массу составляющих натрия (Na), водорода (H), углерода (C) и кислорода (O).
Na: 22.989769H: 1.00794C: 12.0107O: 15.9994
Молярная концентрация 1 кубика сахара в чашке чая равна 0,049 моля на литр.
Так как кислород в формуле — O₃, то необходимо умножить атомную массу кислорода на 3. Получим 47,9982. Теперь сложим массы всех атомов и получим 84,006609. Атомную массу указывают в таблице Менделеева в атомных единицах массы, или а. е. м. Наши вычисления тоже в этих единицах. Одна а. е. м. равна массе одного моля вещества в граммах. То есть, в нашем примере — масса одного моля NaHCO₃ равна 84,006609 грамма. В нашей задаче — 51 грамм соды. Найдем молярную массу, разделив 51 грамм на массу одного моля, то есть на 84 грамма, и получим 0,6 моля.
Получается, что наш раствор — это 0,6 моля соды, растворенные в 20 литрах воды. Разделим это количество соды на общий объем раствора, то есть 0,6 моля / 20 л = 0.03 моль/л. Так как в растворе использовали большое количество растворителя и малое количество растворимого вещества, то его концентрация мала.
Рассмотрим другой пример. Найдем молярную концентрацию одного кусочка сахара в чашке чая. Столовый сахар состоит из сахарозы. Сначала найдем вес одного моля сахарозы, формула которой — C₁₂H₂₂O₁₁. Используя таблицу Менделеева, найдем атомные массы и определим массу одного моля сахарозы: 12×12 + 22×1 + 11×16 = 342 грамм. В одном кубике сахара 4 грамма, что дает нам 4/342 = 0,01 молей. В одной чашке около 237 миллилитров чая, значит концентрация сахара в одной чашке чая равна 0,01 моля / 237 миллилитров × 1000 (чтобы перевести миллилитры в литры) = 0,049 моля на литр.
В стехиометрии определяют количество веществ, которые взаимодействуют друг с другом в химической реакции, а также количество веществ, полученных в результате этой реакции.
Молярная концентрация удобна: при одинаковой температуре и давлении один моль разных газов занимает одинаковый объем, и это свойство можно использовать в разных вычислениях.
Молярную концентрацию широко используют в вычислениях, связанных с химическими реакциями. Раздел химии, в котором рассчитывают соотношения между веществами в химических реакциях и часто работают с молями, называется стехиометрией. Молярную концентрацию можно найти по химической формуле конечного продукта, который потом становится растворимым веществом, как в примере с раствором соды, но можно также вначале найти это вещество по формулам химической реакции, во время которой оно образуется. Для этого нужно знать формулы веществ, участвующих в этой химической реакции. Решив уравнение химической реакции, узнаем формулу молекулы растворяемого вещества, а потом найдем массу молекулы и молярную концентрацию с помощью таблицы Менделеева, как в примерах выше. Конечно, можно производить вычисления и в обратном порядке, используя информацию о молярной концентрации вещества.
Когда нам известны вещества, которые вступают в химическую реакцию друг с другом, мы можем узнать формулу, решив уравнение для химической реакции. Добавив полученное в этой реакции вещество в раствор, можно найти молярную концентрацию, как в предыдущих примерах.
Рассмотрим простой пример. На этот раз смешаем соду с уксусом, чтобы увидеть интересную химическую реакцию. И уксус, и соду легко найти — наверняка они есть у вас на кухне. Как уже упоминалось выше, формула соды — NaHCO₃. Уксус — это не чистое вещество, а 5% раствор уксусной кислоты в воде. Формула уксусной кислоты — CH₃COOH. Концентрация уксусной кислоты в уксусе может быть больше или меньше 5%, в зависимости от производителя и страны, в которой она сделана, так как в разных странах концентрация уксуса разная. В этом эксперименте можно не беспокоиться о химических реакциях воды с другими веществами, так как вода не реагирует с содой. Нам важен только объем воды, когда позже мы будем вычислять концентрацию раствора.
Вначале решим уравнение для химической реакции между содой и уксусной кислотой:
NaHCO₃ + CH₃COOH → NaC₂H₃O₂ + H₂CO₃
Продукт реакции — H₂CO₃, вещество, которое из-за низкой стабильности снова вступает в химическую реакцию.
H₂CO₃ → H₂O + CO₂
В результате реакции получаем воду (H₂O), углекислый газ (CO₂) и ацетат натрия (NaC₂H₃O₂). Смешаем полученный ацетат натрия с водой и найдем молярную концентрацию этого раствора, так же, как перед этим мы находили концентрацию сахара в чае и концентрацию соды в воде. При вычислении объема воды необходимо учитывать и воду, в которой растворена уксусная кислота. Ацетат натрия — интересное вещество. Его используют в химических грелках, например в грелках для рук.
Используя стехиометрию для вычисления количества веществ, вступающих в химическую реакцию, или продуктов реакции, для которых мы позже будем находить молярную концентрацию, следует заметить, что только ограниченное количество вещества может вступать в реакцию с другими веществами. Это также влияет на количество конечного продукта. Если молярная концентрация известна, то, наоборот, можно определить количество исходных продуктов методом обратного расчета. Этот метод нередко используют на практике, при расчетах, связанных с химическими реакциями.
При использовании рецептов, будь то в кулинарии, в изготовлении лекарств, или при создании идеальной среды для аквариумных рыбок, необходимо знать концентрацию. В повседневной жизни чаще всего удобнее использовать граммы, но в фармацевтике и химии чаще используют молярную концентрацию.
При изготовлении лекарств, которые контактируют с мембранами в организме, например при изготовлении глазных капель, необходимо уравновесить осмотическую концентрацию лекарства с концентрацией жидкости в организме. Если этого не сделать, то из-за разницы в осмотической концентрации жидкость начнет передвигаться через мембрану, что может вызвать осложнения.
В фармацевтике
При создании лекарств молярная концентрация очень важна, так как от нее зависит, как лекарство влияет на организм. Если концентрация слишком высока, то лекарства могут быть даже смертельны. С другой стороны, если концентрация слишком мала, то лекарство неэффективно. Кроме этого, концентрация важна при обмене жидкостей через клеточные мембраны в организме. При определении концентрации жидкости, которая должна либо проходить, либо, наоборот, не проходить через мембраны, используют либо молярную концентрацию, либо с ее помощью находят осмотическую концентрацию. Осмотическую концентрацию используют чаще, чем молярную. Если концентрация вещества, например лекарства, выше с одной стороны мембраны, по сравнению с концентрацией с другой стороны мембраны, например, внутри глаза, то более концентрированный раствор переместится через мембрану туда, где концентрация меньше. Такой поток раствора через мембрану нередко проблематичен. Например, если жидкость перемещается внутрь клетки, к примеру, в кровеносную клетку, то возможно, что из-за этого переполнения жидкостью мембрана будет повреждена и разорвется. Утечка жидкости из клетки тоже проблематична, так как из-за этого нарушится работоспособность клетки. Любое вызванное медикаментами течение жидкости через мембрану из клетки или в клетку желательно предотвратить, и для этого концентрацию лекарства стараются сделать похожей на концентрацию жидкости в организме, например в крови.
Пациент получает лекарство методом внутривенного вливания из капельницы.
Стоит заметить, что в некоторых случаях молярная и осмотическая концентрация равны, но это не всегда так. Это зависит от того, распалось ли растворенное в воде вещество на ионы в процессе электролитической диссоциации. Вычисляя осмотическую концентрацию, учитывают частицы в общем, в то время как при вычислении молярной концентрации учитывают только определенные частицы, например молекулы. Поэтому если, например, мы работаем с молекулами, но вещество распалось на ионы, то молекул будет меньше общего числа частиц (включая и молекулы и ионы), и значит и молярная концентрация будет ниже осмотической. Чтобы перевести молярную концентрацию в осмотическую, нужно знать физические свойства раствора.
В изготовлении лекарственных препаратов фармацевты также учитывают тоничность раствора. Тоничность — свойство раствора, которое зависит от концентрации. В отличие от осмотической концентрации, тоничность — это концентрация веществ, которые не пропускает мембрана. Процесс осмоса заставляет растворы с большей концентрацией перемещаться в растворы с меньшей концентрацией, но если мембрана предотвращает это движение, не пропуская через себя раствор, то возникает давление на мембрану. Такое давление обычно проблематично. Если лекарство предназначено для того, чтобы проникнуть в кровь или другую жидкость в организме, то необходимо уравновесить тоничность этого лекарства с тоничностью жидкости в организме, чтобы избежать осмотического давления на мембраны в организме.
Чтобы уравновесить тоничность, лекарственные препараты нередко растворяют в изотоническом растворе. Изотонический раствор — это раствор столовой соли (NaCL) в воде с такой концентрацией, которая позволяет уравновесить тоничность жидкости в организме и тоничность смеси этого раствора и лекарства. Обычно изотонический раствор хранят в стерильных контейнерах, и вливают его внутривенно. Иногда его используют в чистом виде, а иногда — как смесь с лекарством.
Литература
Автор статьи: Kateryna Yuri
Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.
Page 2
Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисленияКонвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер паропроницаемости и скорости переноса параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева
1 микромолярный [мкМ или 0.000001М] = 0,001 миллимоль на литр [ммоль/л]
Общие сведения
Факторы, влияющие на молярную концентрацию
Единицы
Как найти молярную концентрацию
Примеры
Применение
В фармацевтике
Общие сведения
Один моль — это количество вещества, в котором содержится такое же число атомов как в 12 граммах углерода-12, то есть 6×10²³ атомов.
Концентрацию раствора можно измерять разными способами, например как отношение массы растворенного вещества к общему объему раствора. В этой статье мы рассмотрим молярную концентрацию, которую измеряют как отношение между количеством вещества в молях к общему объему раствора. В нашем случае вещество — это растворимое вещество, а объем мы измеряем для всего раствора, даже если в нем растворены другие вещества. Количество вещества — это число элементарных составляющих, например атомов или молекул вещества. Так как даже в малом количестве вещества обычно большое число элементарных составляющих, то для измерения количества вещества используют специальные единицы, моли. Один моль равен числу атомов в 12 г углерода-12, то есть это приблизительно 6×10²³ атомов.
Использовать моли удобно в случае, если мы работаем с количеством вещества настолько малым, что его количество легко можно измерить домашними или промышленными приборами. Иначе пришлось бы работать с очень большими числами, что неудобно, или с очень маленьким весом или объемом, которые трудно найти без специализированного лабораторного оборудования. Чаще всего при работе с молями используют атомы, хотя возможно использовать и другие частицы, например молекулы или электроны. Следует помнить, что если используются не атомы, то необходимо это указать. Иногда молярную концентрацию также называют молярностью.
Следует не путать молярность с моляльностью. В отличии от молярности, моляльность — это отношение количества растворимого вещества к массе растворителя, а не к массе всего раствора. Когда растворитель — вода, а количество растворимого вещества по сравнению с количеством воды мало, то молярность и моляльность похожи по значению, но в остальных случаях они обычно отличаются.
Вес одного моля разных веществ. Его можно найти с помощью таблицы Менделеева.
Факторы, влияющие на молярную концентрацию
Молярная концентрация зависит от температуры, хотя эта зависимость сильнее для одних и слабее для других растворов, в зависимости от того, какие вещества в них растворены. Некоторые растворители при повышении температуры расширяются. В этом случае, если растворенные в этих растворителях вещества не расширяются вместе с растворителем, то молярная концентрация всего раствора понижается. С другой стороны, в некоторых случаях с повышением температуры растворитель испаряется, а количество растворимого вещества не меняется — в этом случае концентрация раствора увеличится. Иногда происходит наоборот. Иногда изменение температуры влияет на то, как растворяется растворимое вещество. Например, часть или все растворимое вещество перестает растворяться, и концентрация раствора уменьшается.
Единицы
Молярную концентрацию измеряют в молях на единицу объема, например молях на литр или молях на кубический метр. Моли на кубический метр — это единица СИ. Молярность можно также измерять, используя и другие единицы объема.
Как найти молярную концентрацию
Чтобы найти молярную концентрацию необходимо знать количество и объем вещества. Количество вещества можно вычислить, используя химическую формулу этого вещества и информацию об общей массе этого вещества в растворе. То есть, чтобы узнать количество раствора в молях, узнаем из таблицы Менделеева атомную массу каждого атома в растворе, а потом разделим общую массу вещества на общую атомную массу атомов в молекуле. Перед тем, как складывать вместе атомную массу следует убедиться, что мы умножили массу каждого атома на количество атомов в молекуле, которую мы рассматриваем.
Можно производить вычисления и в обратном порядке. Если известна молярная концентрация раствора и формула растворимого вещества, то можно узнать количество растворителя в растворе, в молях и граммах.
Примеры
Найдем молярность раствора из 20 литров воды и 3-х столовых ложек соды. В одной столовой ложке — примерно 17 грамм, а в трех — 51 грамм. Сода — это гидрокарбонат натрия, формула которого — NaHCO₃. В этом примере мы будем использовать атомы для вычисления молярности, поэтому найдем атомную массу составляющих натрия (Na), водорода (H), углерода (C) и кислорода (O).
Na: 22.989769H: 1.00794C: 12.0107O: 15.9994
Молярная концентрация 1 кубика сахара в чашке чая равна 0,049 моля на литр.
Так как кислород в формуле — O₃, то необходимо умножить атомную массу кислорода на 3. Получим 47,9982. Теперь сложим массы всех атомов и получим 84,006609. Атомную массу указывают в таблице Менделеева в атомных единицах массы, или а. е. м. Наши вычисления тоже в этих единицах. Одна а. е. м. равна массе одного моля вещества в граммах. То есть, в нашем примере — масса одного моля NaHCO₃ равна 84,006609 грамма. В нашей задаче — 51 грамм соды. Найдем молярную массу, разделив 51 грамм на массу одного моля, то есть на 84 грамма, и получим 0,6 моля.
Получается, что наш раствор — это 0,6 моля соды, растворенные в 20 литрах воды. Разделим это количество соды на общий объем раствора, то есть 0,6 моля / 20 л = 0.03 моль/л. Так как в растворе использовали большое количество растворителя и малое количество растворимого вещества, то его концентрация мала.
Рассмотрим другой пример. Найдем молярную концентрацию одного кусочка сахара в чашке чая. Столовый сахар состоит из сахарозы. Сначала найдем вес одного моля сахарозы, формула которой — C₁₂H₂₂O₁₁. Используя таблицу Менделеева, найдем атомные массы и определим массу одного моля сахарозы: 12×12 + 22×1 + 11×16 = 342 грамм. В одном кубике сахара 4 грамма, что дает нам 4/342 = 0,01 молей. В одной чашке около 237 миллилитров чая, значит концентрация сахара в одной чашке чая равна 0,01 моля / 237 миллилитров × 1000 (чтобы перевести миллилитры в литры) = 0,049 моля на литр.
В стехиометрии определяют количество веществ, которые взаимодействуют друг с другом в химической реакции, а также количество веществ, полученных в результате этой реакции.
Молярная концентрация удобна: при одинаковой температуре и давлении один моль разных газов занимает одинаковый объем, и это свойство можно использовать в разных вычислениях.
Молярную концентрацию широко используют в вычислениях, связанных с химическими реакциями. Раздел химии, в котором рассчитывают соотношения между веществами в химических реакциях и часто работают с молями, называется стехиометрией. Молярную концентрацию можно найти по химической формуле конечного продукта, который потом становится растворимым веществом, как в примере с раствором соды, но можно также вначале найти это вещество по формулам химической реакции, во время которой оно образуется. Для этого нужно знать формулы веществ, участвующих в этой химической реакции. Решив уравнение химической реакции, узнаем формулу молекулы растворяемого вещества, а потом найдем массу молекулы и молярную концентрацию с помощью таблицы Менделеева, как в примерах выше. Конечно, можно производить вычисления и в обратном порядке, используя информацию о молярной концентрации вещества.
Когда нам известны вещества, которые вступают в химическую реакцию друг с другом, мы можем узнать формулу, решив уравнение для химической реакции. Добавив полученное в этой реакции вещество в раствор, можно найти молярную концентрацию, как в предыдущих примерах.
Рассмотрим простой пример. На этот раз смешаем соду с уксусом, чтобы увидеть интересную химическую реакцию. И уксус, и соду легко найти — наверняка они есть у вас на кухне. Как уже упоминалось выше, формула соды — NaHCO₃. Уксус — это не чистое вещество, а 5% раствор уксусной кислоты в воде. Формула уксусной кислоты — CH₃COOH. Концентрация уксусной кислоты в уксусе может быть больше или меньше 5%, в зависимости от производителя и страны, в которой она сделана, так как в разных странах концентрация уксуса разная. В этом эксперименте можно не беспокоиться о химических реакциях воды с другими веществами, так как вода не реагирует с содой. Нам важен только объем воды, когда позже мы будем вычислять концентрацию раствора.
Вначале решим уравнение для химической реакции между содой и уксусной кислотой:
NaHCO₃ + CH₃COOH → NaC₂H₃O₂ + H₂CO₃
Продукт реакции — H₂CO₃, вещество, которое из-за низкой стабильности снова вступает в химическую реакцию.
H₂CO₃ → H₂O + CO₂
В результате реакции получаем воду (H₂O), углекислый газ (CO₂) и ацетат натрия (NaC₂H₃O₂). Смешаем полученный ацетат натрия с водой и найдем молярную концентрацию этого раствора, так же, как перед этим мы находили концентрацию сахара в чае и концентрацию соды в воде. При вычислении объема воды необходимо учитывать и воду, в которой растворена уксусная кислота. Ацетат натрия — интересное вещество. Его используют в химических грелках, например в грелках для рук.
Используя стехиометрию для вычисления количества веществ, вступающих в химическую реакцию, или продуктов реакции, для которых мы позже будем находить молярную концентрацию, следует заметить, что только ограниченное количество вещества может вступать в реакцию с другими веществами. Это также влияет на количество конечного продукта. Если молярная концентрация известна, то, наоборот, можно определить количество исходных продуктов методом обратного расчета. Этот метод нередко используют на практике, при расчетах, связанных с химическими реакциями.
При использовании рецептов, будь то в кулинарии, в изготовлении лекарств, или при создании идеальной среды для аквариумных рыбок, необходимо знать концентрацию. В повседневной жизни чаще всего удобнее использовать граммы, но в фармацевтике и химии чаще используют молярную концентрацию.
При изготовлении лекарств, которые контактируют с мембранами в организме, например при изготовлении глазных капель, необходимо уравновесить осмотическую концентрацию лекарства с концентрацией жидкости в организме. Если этого не сделать, то из-за разницы в осмотической концентрации жидкость начнет передвигаться через мембрану, что может вызвать осложнения.
В фармацевтике
При создании лекарств молярная концентрация очень важна, так как от нее зависит, как лекарство влияет на организм. Если концентрация слишком высока, то лекарства могут быть даже смертельны. С другой стороны, если концентрация слишком мала, то лекарство неэффективно. Кроме этого, концентрация важна при обмене жидкостей через клеточные мембраны в организме. При определении концентрации жидкости, которая должна либо проходить, либо, наоборот, не проходить через мембраны, используют либо молярную концентрацию, либо с ее помощью находят осмотическую концентрацию. Осмотическую концентрацию используют чаще, чем молярную. Если концентрация вещества, например лекарства, выше с одной стороны мембраны, по сравнению с концентрацией с другой стороны мембраны, например, внутри глаза, то более концентрированный раствор переместится через мембрану туда, где концентрация меньше. Такой поток раствора через мембрану нередко проблематичен. Например, если жидкость перемещается внутрь клетки, к примеру, в кровеносную клетку, то возможно, что из-за этого переполнения жидкостью мембрана будет повреждена и разорвется. Утечка жидкости из клетки тоже проблематична, так как из-за этого нарушится работоспособность клетки. Любое вызванное медикаментами течение жидкости через мембрану из клетки или в клетку желательно предотвратить, и для этого концентрацию лекарства стараются сделать похожей на концентрацию жидкости в организме, например в крови.
Пациент получает лекарство методом внутривенного вливания из капельницы.
Стоит заметить, что в некоторых случаях молярная и осмотическая концентрация равны, но это не всегда так. Это зависит от того, распалось ли растворенное в воде вещество на ионы в процессе электролитической диссоциации. Вычисляя осмотическую концентрацию, учитывают частицы в общем, в то время как при вычислении молярной концентрации учитывают только определенные частицы, например молекулы. Поэтому если, например, мы работаем с молекулами, но вещество распалось на ионы, то молекул будет меньше общего числа частиц (включая и молекулы и ионы), и значит и молярная концентрация будет ниже осмотической. Чтобы перевести молярную концентрацию в осмотическую, нужно знать физические свойства раствора.
В изготовлении лекарственных препаратов фармацевты также учитывают тоничность раствора. Тоничность — свойство раствора, которое зависит от концентрации. В отличие от осмотической концентрации, тоничность — это концентрация веществ, которые не пропускает мембрана. Процесс осмоса заставляет растворы с большей концентрацией перемещаться в растворы с меньшей концентрацией, но если мембрана предотвращает это движение, не пропуская через себя раствор, то возникает давление на мембрану. Такое давление обычно проблематично. Если лекарство предназначено для того, чтобы проникнуть в кровь или другую жидкость в организме, то необходимо уравновесить тоничность этого лекарства с тоничностью жидкости в организме, чтобы избежать осмотического давления на мембраны в организме.
Чтобы уравновесить тоничность, лекарственные препараты нередко растворяют в изотоническом растворе. Изотонический раствор — это раствор столовой соли (NaCL) в воде с такой концентрацией, которая позволяет уравновесить тоничность жидкости в организме и тоничность смеси этого раствора и лекарства. Обычно изотонический раствор хранят в стерильных контейнерах, и вливают его внутривенно. Иногда его используют в чистом виде, а иногда — как смесь с лекарством.
Литература
Автор статьи: Kateryna Yuri
Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.
миллимоль на литр (ммоль/л)
Время Динамическая вязкость Кинематическая вязкость Давление, механическое напряжение Длина и расстояние Объем данных Скорость передачи данных Количество вещества Концентрация вещества Массовая концентрация Молярная концентрация Крутящий момент Магнитная индукция Магнитный поток Магнитодвижущая сила Напряженность магнитного поля Масса Момент инерции Мощность Объем, емкость Площадь Мощность поглощенной дозы ионизирующего излучения Радиация. Поглощённая доза Радиация. Экспозиционная доза Радиоактивность. Радиоактивный распад Расход массовый Расход молярный Расход объемный Свет, фотометрия Освещенность Сила света Яркость Сила Линейная скорость Угловая скорость (скорость вращения) Ускорение линейное Ускорение угловое Твердость Температура Коэффициент теплоотдачи Термическое сопротивление Удельная теплопроводность Удельная теплота сгорания (по массе) Удельная теплота сгорания топлива (по объему) Удельная теплоёмкость Энергетическая экспозиция, мощность теплового излучения Углы Уровень звука Частота Индуктивность Линейная плотность заряда Напряжённость электрического поля Объемная плотность заряда Поверхностная плотность заряда Поверхностная плотность тока Удельная электрическая проводимость Удельное электрическое сопротивление Электрическая емкость Электрическая проводимость Электрический заряд Электрический ток Электрическое сопротивление Электростатический потенциал и напряжение Энергия и работа Разрешение в компьютерной графике
Перевести единицы: миллимоль на литр [ммоль/л] киломоль на литр [кмоль/л] • Гидравлика и гидромеханика — жидкости • Конвертер молярной концентрации • Компактный калькулятор
Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисленияКонвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер паропроницаемости и скорости переноса параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева
1 миллимоль на литр [ммоль/л] = 1E-06 киломоль на литр [кмоль/л]
Общие сведения
Факторы, влияющие на молярную концентрацию
Единицы
Как найти молярную концентрацию
Примеры
Применение
В фармацевтике
Общие сведения
Один моль — это количество вещества, в котором содержится такое же число атомов как в 12 граммах углерода-12, то есть 6×10²³ атомов.
Концентрацию раствора можно измерять разными способами, например как отношение массы растворенного вещества к общему объему раствора. В этой статье мы рассмотрим молярную концентрацию, которую измеряют как отношение между количеством вещества в молях к общему объему раствора. В нашем случае вещество — это растворимое вещество, а объем мы измеряем для всего раствора, даже если в нем растворены другие вещества. Количество вещества — это число элементарных составляющих, например атомов или молекул вещества. Так как даже в малом количестве вещества обычно большое число элементарных составляющих, то для измерения количества вещества используют специальные единицы, моли. Один моль равен числу атомов в 12 г углерода-12, то есть это приблизительно 6×10²³ атомов.
Использовать моли удобно в случае, если мы работаем с количеством вещества настолько малым, что его количество легко можно измерить домашними или промышленными приборами. Иначе пришлось бы работать с очень большими числами, что неудобно, или с очень маленьким весом или объемом, которые трудно найти без специализированного лабораторного оборудования. Чаще всего при работе с молями используют атомы, хотя возможно использовать и другие частицы, например молекулы или электроны. Следует помнить, что если используются не атомы, то необходимо это указать. Иногда молярную концентрацию также называют молярностью.
Следует не путать молярность с моляльностью. В отличии от молярности, моляльность — это отношение количества растворимого вещества к массе растворителя, а не к массе всего раствора. Когда растворитель — вода, а количество растворимого вещества по сравнению с количеством воды мало, то молярность и моляльность похожи по значению, но в остальных случаях они обычно отличаются.
Вес одного моля разных веществ. Его можно найти с помощью таблицы Менделеева.
Факторы, влияющие на молярную концентрацию
Молярная концентрация зависит от температуры, хотя эта зависимость сильнее для одних и слабее для других растворов, в зависимости от того, какие вещества в них растворены. Некоторые растворители при повышении температуры расширяются. В этом случае, если растворенные в этих растворителях вещества не расширяются вместе с растворителем, то молярная концентрация всего раствора понижается. С другой стороны, в некоторых случаях с повышением температуры растворитель испаряется, а количество растворимого вещества не меняется — в этом случае концентрация раствора увеличится. Иногда происходит наоборот. Иногда изменение температуры влияет на то, как растворяется растворимое вещество. Например, часть или все растворимое вещество перестает растворяться, и концентрация раствора уменьшается.
Единицы
Молярную концентрацию измеряют в молях на единицу объема, например молях на литр или молях на кубический метр. Моли на кубический метр — это единица СИ. Молярность можно также измерять, используя и другие единицы объема.
Как найти молярную концентрацию
Чтобы найти молярную концентрацию необходимо знать количество и объем вещества. Количество вещества можно вычислить, используя химическую формулу этого вещества и информацию об общей массе этого вещества в растворе. То есть, чтобы узнать количество раствора в молях, узнаем из таблицы Менделеева атомную массу каждого атома в растворе, а потом разделим общую массу вещества на общую атомную массу атомов в молекуле. Перед тем, как складывать вместе атомную массу следует убедиться, что мы умножили массу каждого атома на количество атомов в молекуле, которую мы рассматриваем.
Можно производить вычисления и в обратном порядке. Если известна молярная концентрация раствора и формула растворимого вещества, то можно узнать количество растворителя в растворе, в молях и граммах.
Примеры
Найдем молярность раствора из 20 литров воды и 3-х столовых ложек соды. В одной столовой ложке — примерно 17 грамм, а в трех — 51 грамм. Сода — это гидрокарбонат натрия, формула которого — NaHCO₃. В этом примере мы будем использовать атомы для вычисления молярности, поэтому найдем атомную массу составляющих натрия (Na), водорода (H), углерода (C) и кислорода (O).
Na: 22.989769H: 1.00794C: 12.0107O: 15.9994
Молярная концентрация 1 кубика сахара в чашке чая равна 0,049 моля на литр.
Так как кислород в формуле — O₃, то необходимо умножить атомную массу кислорода на 3. Получим 47,9982. Теперь сложим массы всех атомов и получим 84,006609. Атомную массу указывают в таблице Менделеева в атомных единицах массы, или а. е. м. Наши вычисления тоже в этих единицах. Одна а. е. м. равна массе одного моля вещества в граммах. То есть, в нашем примере — масса одного моля NaHCO₃ равна 84,006609 грамма. В нашей задаче — 51 грамм соды. Найдем молярную массу, разделив 51 грамм на массу одного моля, то есть на 84 грамма, и получим 0,6 моля.
Получается, что наш раствор — это 0,6 моля соды, растворенные в 20 литрах воды. Разделим это количество соды на общий объем раствора, то есть 0,6 моля / 20 л = 0.03 моль/л. Так как в растворе использовали большое количество растворителя и малое количество растворимого вещества, то его концентрация мала.
Рассмотрим другой пример. Найдем молярную концентрацию одного кусочка сахара в чашке чая. Столовый сахар состоит из сахарозы. Сначала найдем вес одного моля сахарозы, формула которой — C₁₂H₂₂O₁₁. Используя таблицу Менделеева, найдем атомные массы и определим массу одного моля сахарозы: 12×12 + 22×1 + 11×16 = 342 грамм. В одном кубике сахара 4 грамма, что дает нам 4/342 = 0,01 молей. В одной чашке около 237 миллилитров чая, значит концентрация сахара в одной чашке чая равна 0,01 моля / 237 миллилитров × 1000 (чтобы перевести миллилитры в литры) = 0,049 моля на литр.
В стехиометрии определяют количество веществ, которые взаимодействуют друг с другом в химической реакции, а также количество веществ, полученных в результате этой реакции.
Молярная концентрация удобна: при одинаковой температуре и давлении один моль разных газов занимает одинаковый объем, и это свойство можно использовать в разных вычислениях.
Молярную концентрацию широко используют в вычислениях, связанных с химическими реакциями. Раздел химии, в котором рассчитывают соотношения между веществами в химических реакциях и часто работают с молями, называется стехиометрией. Молярную концентрацию можно найти по химической формуле конечного продукта, который потом становится растворимым веществом, как в примере с раствором соды, но можно также вначале найти это вещество по формулам химической реакции, во время которой оно образуется. Для этого нужно знать формулы веществ, участвующих в этой химической реакции. Решив уравнение химической реакции, узнаем формулу молекулы растворяемого вещества, а потом найдем массу молекулы и молярную концентрацию с помощью таблицы Менделеева, как в примерах выше. Конечно, можно производить вычисления и в обратном порядке, используя информацию о молярной концентрации вещества.
Когда нам известны вещества, которые вступают в химическую реакцию друг с другом, мы можем узнать формулу, решив уравнение для химической реакции. Добавив полученное в этой реакции вещество в раствор, можно найти молярную концентрацию, как в предыдущих примерах.
Рассмотрим простой пример. На этот раз смешаем соду с уксусом, чтобы увидеть интересную химическую реакцию. И уксус, и соду легко найти — наверняка они есть у вас на кухне. Как уже упоминалось выше, формула соды — NaHCO₃. Уксус — это не чистое вещество, а 5% раствор уксусной кислоты в воде. Формула уксусной кислоты — CH₃COOH. Концентрация уксусной кислоты в уксусе может быть больше или меньше 5%, в зависимости от производителя и страны, в которой она сделана, так как в разных странах концентрация уксуса разная. В этом эксперименте можно не беспокоиться о химических реакциях воды с другими веществами, так как вода не реагирует с содой. Нам важен только объем воды, когда позже мы будем вычислять концентрацию раствора.
Вначале решим уравнение для химической реакции между содой и уксусной кислотой:
NaHCO₃ + CH₃COOH → NaC₂H₃O₂ + H₂CO₃
Продукт реакции — H₂CO₃, вещество, которое из-за низкой стабильности снова вступает в химическую реакцию.
H₂CO₃ → H₂O + CO₂
В результате реакции получаем воду (H₂O), углекислый газ (CO₂) и ацетат натрия (NaC₂H₃O₂). Смешаем полученный ацетат натрия с водой и найдем молярную концентрацию этого раствора, так же, как перед этим мы находили концентрацию сахара в чае и концентрацию соды в воде. При вычислении объема воды необходимо учитывать и воду, в которой растворена уксусная кислота. Ацетат натрия — интересное вещество. Его используют в химических грелках, например в грелках для рук.
Используя стехиометрию для вычисления количества веществ, вступающих в химическую реакцию, или продуктов реакции, для которых мы позже будем находить молярную концентрацию, следует заметить, что только ограниченное количество вещества может вступать в реакцию с другими веществами. Это также влияет на количество конечного продукта. Если молярная концентрация известна, то, наоборот, можно определить количество исходных продуктов методом обратного расчета. Этот метод нередко используют на практике, при расчетах, связанных с химическими реакциями.
При использовании рецептов, будь то в кулинарии, в изготовлении лекарств, или при создании идеальной среды для аквариумных рыбок, необходимо знать концентрацию. В повседневной жизни чаще всего удобнее использовать граммы, но в фармацевтике и химии чаще используют молярную концентрацию.
При изготовлении лекарств, которые контактируют с мембранами в организме, например при изготовлении глазных капель, необходимо уравновесить осмотическую концентрацию лекарства с концентрацией жидкости в организме. Если этого не сделать, то из-за разницы в осмотической концентрации жидкость начнет передвигаться через мембрану, что может вызвать осложнения.
В фармацевтике
При создании лекарств молярная концентрация очень важна, так как от нее зависит, как лекарство влияет на организм. Если концентрация слишком высока, то лекарства могут быть даже смертельны. С другой стороны, если концентрация слишком мала, то лекарство неэффективно. Кроме этого, концентрация важна при обмене жидкостей через клеточные мембраны в организме. При определении концентрации жидкости, которая должна либо проходить, либо, наоборот, не проходить через мембраны, используют либо молярную концентрацию, либо с ее помощью находят осмотическую концентрацию. Осмотическую концентрацию используют чаще, чем молярную. Если концентрация вещества, например лекарства, выше с одной стороны мембраны, по сравнению с концентрацией с другой стороны мембраны, например, внутри глаза, то более концентрированный раствор переместится через мембрану туда, где концентрация меньше. Такой поток раствора через мембрану нередко проблематичен. Например, если жидкость перемещается внутрь клетки, к примеру, в кровеносную клетку, то возможно, что из-за этого переполнения жидкостью мембрана будет повреждена и разорвется. Утечка жидкости из клетки тоже проблематична, так как из-за этого нарушится работоспособность клетки. Любое вызванное медикаментами течение жидкости через мембрану из клетки или в клетку желательно предотвратить, и для этого концентрацию лекарства стараются сделать похожей на концентрацию жидкости в организме, например в крови.
Пациент получает лекарство методом внутривенного вливания из капельницы.
Стоит заметить, что в некоторых случаях молярная и осмотическая концентрация равны, но это не всегда так. Это зависит от того, распалось ли растворенное в воде вещество на ионы в процессе электролитической диссоциации. Вычисляя осмотическую концентрацию, учитывают частицы в общем, в то время как при вычислении молярной концентрации учитывают только определенные частицы, например молекулы. Поэтому если, например, мы работаем с молекулами, но вещество распалось на ионы, то молекул будет меньше общего числа частиц (включая и молекулы и ионы), и значит и молярная концентрация будет ниже осмотической. Чтобы перевести молярную концентрацию в осмотическую, нужно знать физические свойства раствора.
В изготовлении лекарственных препаратов фармацевты также учитывают тоничность раствора. Тоничность — свойство раствора, которое зависит от концентрации. В отличие от осмотической концентрации, тоничность — это концентрация веществ, которые не пропускает мембрана. Процесс осмоса заставляет растворы с большей концентрацией перемещаться в растворы с меньшей концентрацией, но если мембрана предотвращает это движение, не пропуская через себя раствор, то возникает давление на мембрану. Такое давление обычно проблематично. Если лекарство предназначено для того, чтобы проникнуть в кровь или другую жидкость в организме, то необходимо уравновесить тоничность этого лекарства с тоничностью жидкости в организме, чтобы избежать осмотического давления на мембраны в организме.
Чтобы уравновесить тоничность, лекарственные препараты нередко растворяют в изотоническом растворе. Изотонический раствор — это раствор столовой соли (NaCL) в воде с такой концентрацией, которая позволяет уравновесить тоничность жидкости в организме и тоничность смеси этого раствора и лекарства. Обычно изотонический раствор хранят в стерильных контейнерах, и вливают его внутривенно. Иногда его используют в чистом виде, а иногда — как смесь с лекарством.
Литература
Автор статьи: Kateryna Yuri
Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.
Page 2
Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисленияКонвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер паропроницаемости и скорости переноса параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева
1 миллимоль на литр [ммоль/л] = 1E-06 киломоль на литр [кмоль/л]
Общие сведения
Факторы, влияющие на молярную концентрацию
Единицы
Как найти молярную концентрацию
Примеры
Применение
В фармацевтике
Общие сведения
Один моль — это количество вещества, в котором содержится такое же число атомов как в 12 граммах углерода-12, то есть 6×10²³ атомов.
Концентрацию раствора можно измерять разными способами, например как отношение массы растворенного вещества к общему объему раствора. В этой статье мы рассмотрим молярную концентрацию, которую измеряют как отношение между количеством вещества в молях к общему объему раствора. В нашем случае вещество — это растворимое вещество, а объем мы измеряем для всего раствора, даже если в нем растворены другие вещества. Количество вещества — это число элементарных составляющих, например атомов или молекул вещества. Так как даже в малом количестве вещества обычно большое число элементарных составляющих, то для измерения количества вещества используют специальные единицы, моли. Один моль равен числу атомов в 12 г углерода-12, то есть это приблизительно 6×10²³ атомов.
Использовать моли удобно в случае, если мы работаем с количеством вещества настолько малым, что его количество легко можно измерить домашними или промышленными приборами. Иначе пришлось бы работать с очень большими числами, что неудобно, или с очень маленьким весом или объемом, которые трудно найти без специализированного лабораторного оборудования. Чаще всего при работе с молями используют атомы, хотя возможно использовать и другие частицы, например молекулы или электроны. Следует помнить, что если используются не атомы, то необходимо это указать. Иногда молярную концентрацию также называют молярностью.
Следует не путать молярность с моляльностью. В отличии от молярности, моляльность — это отношение количества растворимого вещества к массе растворителя, а не к массе всего раствора. Когда растворитель — вода, а количество растворимого вещества по сравнению с количеством воды мало, то молярность и моляльность похожи по значению, но в остальных случаях они обычно отличаются.
Вес одного моля разных веществ. Его можно найти с помощью таблицы Менделеева.
Факторы, влияющие на молярную концентрацию
Молярная концентрация зависит от температуры, хотя эта зависимость сильнее для одних и слабее для других растворов, в зависимости от того, какие вещества в них растворены. Некоторые растворители при повышении температуры расширяются. В этом случае, если растворенные в этих растворителях вещества не расширяются вместе с растворителем, то молярная концентрация всего раствора понижается. С другой стороны, в некоторых случаях с повышением температуры растворитель испаряется, а количество растворимого вещества не меняется — в этом случае концентрация раствора увеличится. Иногда происходит наоборот. Иногда изменение температуры влияет на то, как растворяется растворимое вещество. Например, часть или все растворимое вещество перестает растворяться, и концентрация раствора уменьшается.
Единицы
Молярную концентрацию измеряют в молях на единицу объема, например молях на литр или молях на кубический метр. Моли на кубический метр — это единица СИ. Молярность можно также измерять, используя и другие единицы объема.
Как найти молярную концентрацию
Чтобы найти молярную концентрацию необходимо знать количество и объем вещества. Количество вещества можно вычислить, используя химическую формулу этого вещества и информацию об общей массе этого вещества в растворе. То есть, чтобы узнать количество раствора в молях, узнаем из таблицы Менделеева атомную массу каждого атома в растворе, а потом разделим общую массу вещества на общую атомную массу атомов в молекуле. Перед тем, как складывать вместе атомную массу следует убедиться, что мы умножили массу каждого атома на количество атомов в молекуле, которую мы рассматриваем.
Можно производить вычисления и в обратном порядке. Если известна молярная концентрация раствора и формула растворимого вещества, то можно узнать количество растворителя в растворе, в молях и граммах.
Примеры
Найдем молярность раствора из 20 литров воды и 3-х столовых ложек соды. В одной столовой ложке — примерно 17 грамм, а в трех — 51 грамм. Сода — это гидрокарбонат натрия, формула которого — NaHCO₃. В этом примере мы будем использовать атомы для вычисления молярности, поэтому найдем атомную массу составляющих натрия (Na), водорода (H), углерода (C) и кислорода (O).
Na: 22.989769H: 1.00794C: 12.0107O: 15.9994
Молярная концентрация 1 кубика сахара в чашке чая равна 0,049 моля на литр.
Так как кислород в формуле — O₃, то необходимо умножить атомную массу кислорода на 3. Получим 47,9982. Теперь сложим массы всех атомов и получим 84,006609. Атомную массу указывают в таблице Менделеева в атомных единицах массы, или а. е. м. Наши вычисления тоже в этих единицах. Одна а. е. м. равна массе одного моля вещества в граммах. То есть, в нашем примере — масса одного моля NaHCO₃ равна 84,006609 грамма. В нашей задаче — 51 грамм соды. Найдем молярную массу, разделив 51 грамм на массу одного моля, то есть на 84 грамма, и получим 0,6 моля.
Получается, что наш раствор — это 0,6 моля соды, растворенные в 20 литрах воды. Разделим это количество соды на общий объем раствора, то есть 0,6 моля / 20 л = 0.03 моль/л. Так как в растворе использовали большое количество растворителя и малое количество растворимого вещества, то его концентрация мала.
Рассмотрим другой пример. Найдем молярную концентрацию одного кусочка сахара в чашке чая. Столовый сахар состоит из сахарозы. Сначала найдем вес одного моля сахарозы, формула которой — C₁₂H₂₂O₁₁. Используя таблицу Менделеева, найдем атомные массы и определим массу одного моля сахарозы: 12×12 + 22×1 + 11×16 = 342 грамм. В одном кубике сахара 4 грамма, что дает нам 4/342 = 0,01 молей. В одной чашке около 237 миллилитров чая, значит концентрация сахара в одной чашке чая равна 0,01 моля / 237 миллилитров × 1000 (чтобы перевести миллилитры в литры) = 0,049 моля на литр.
В стехиометрии определяют количество веществ, которые взаимодействуют друг с другом в химической реакции, а также количество веществ, полученных в результате этой реакции.
Молярная концентрация удобна: при одинаковой температуре и давлении один моль разных газов занимает одинаковый объем, и это свойство можно использовать в разных вычислениях.
Молярную концентрацию широко используют в вычислениях, связанных с химическими реакциями. Раздел химии, в котором рассчитывают соотношения между веществами в химических реакциях и часто работают с молями, называется стехиометрией. Молярную концентрацию можно найти по химической формуле конечного продукта, который потом становится растворимым веществом, как в примере с раствором соды, но можно также вначале найти это вещество по формулам химической реакции, во время которой оно образуется. Для этого нужно знать формулы веществ, участвующих в этой химической реакции. Решив уравнение химической реакции, узнаем формулу молекулы растворяемого вещества, а потом найдем массу молекулы и молярную концентрацию с помощью таблицы Менделеева, как в примерах выше. Конечно, можно производить вычисления и в обратном порядке, используя информацию о молярной концентрации вещества.
Когда нам известны вещества, которые вступают в химическую реакцию друг с другом, мы можем узнать формулу, решив уравнение для химической реакции. Добавив полученное в этой реакции вещество в раствор, можно найти молярную концентрацию, как в предыдущих примерах.
Рассмотрим простой пример. На этот раз смешаем соду с уксусом, чтобы увидеть интересную химическую реакцию. И уксус, и соду легко найти — наверняка они есть у вас на кухне. Как уже упоминалось выше, формула соды — NaHCO₃. Уксус — это не чистое вещество, а 5% раствор уксусной кислоты в воде. Формула уксусной кислоты — CH₃COOH. Концентрация уксусной кислоты в уксусе может быть больше или меньше 5%, в зависимости от производителя и страны, в которой она сделана, так как в разных странах концентрация уксуса разная. В этом эксперименте можно не беспокоиться о химических реакциях воды с другими веществами, так как вода не реагирует с содой. Нам важен только объем воды, когда позже мы будем вычислять концентрацию раствора.
Вначале решим уравнение для химической реакции между содой и уксусной кислотой:
NaHCO₃ + CH₃COOH → NaC₂H₃O₂ + H₂CO₃
Продукт реакции — H₂CO₃, вещество, которое из-за низкой стабильности снова вступает в химическую реакцию.
H₂CO₃ → H₂O + CO₂
В результате реакции получаем воду (H₂O), углекислый газ (CO₂) и ацетат натрия (NaC₂H₃O₂). Смешаем полученный ацетат натрия с водой и найдем молярную концентрацию этого раствора, так же, как перед этим мы находили концентрацию сахара в чае и концентрацию соды в воде. При вычислении объема воды необходимо учитывать и воду, в которой растворена уксусная кислота. Ацетат натрия — интересное вещество. Его используют в химических грелках, например в грелках для рук.
Используя стехиометрию для вычисления количества веществ, вступающих в химическую реакцию, или продуктов реакции, для которых мы позже будем находить молярную концентрацию, следует заметить, что только ограниченное количество вещества может вступать в реакцию с другими веществами. Это также влияет на количество конечного продукта. Если молярная концентрация известна, то, наоборот, можно определить количество исходных продуктов методом обратного расчета. Этот метод нередко используют на практике, при расчетах, связанных с химическими реакциями.
При использовании рецептов, будь то в кулинарии, в изготовлении лекарств, или при создании идеальной среды для аквариумных рыбок, необходимо знать концентрацию. В повседневной жизни чаще всего удобнее использовать граммы, но в фармацевтике и химии чаще используют молярную концентрацию.
При изготовлении лекарств, которые контактируют с мембранами в организме, например при изготовлении глазных капель, необходимо уравновесить осмотическую концентрацию лекарства с концентрацией жидкости в организме. Если этого не сделать, то из-за разницы в осмотической концентрации жидкость начнет передвигаться через мембрану, что может вызвать осложнения.
В фармацевтике
При создании лекарств молярная концентрация очень важна, так как от нее зависит, как лекарство влияет на организм. Если концентрация слишком высока, то лекарства могут быть даже смертельны. С другой стороны, если концентрация слишком мала, то лекарство неэффективно. Кроме этого, концентрация важна при обмене жидкостей через клеточные мембраны в организме. При определении концентрации жидкости, которая должна либо проходить, либо, наоборот, не проходить через мембраны, используют либо молярную концентрацию, либо с ее помощью находят осмотическую концентрацию. Осмотическую концентрацию используют чаще, чем молярную. Если концентрация вещества, например лекарства, выше с одной стороны мембраны, по сравнению с концентрацией с другой стороны мембраны, например, внутри глаза, то более концентрированный раствор переместится через мембрану туда, где концентрация меньше. Такой поток раствора через мембрану нередко проблематичен. Например, если жидкость перемещается внутрь клетки, к примеру, в кровеносную клетку, то возможно, что из-за этого переполнения жидкостью мембрана будет повреждена и разорвется. Утечка жидкости из клетки тоже проблематична, так как из-за этого нарушится работоспособность клетки. Любое вызванное медикаментами течение жидкости через мембрану из клетки или в клетку желательно предотвратить, и для этого концентрацию лекарства стараются сделать похожей на концентрацию жидкости в организме, например в крови.
Пациент получает лекарство методом внутривенного вливания из капельницы.
Стоит заметить, что в некоторых случаях молярная и осмотическая концентрация равны, но это не всегда так. Это зависит от того, распалось ли растворенное в воде вещество на ионы в процессе электролитической диссоциации. Вычисляя осмотическую концентрацию, учитывают частицы в общем, в то время как при вычислении молярной концентрации учитывают только определенные частицы, например молекулы. Поэтому если, например, мы работаем с молекулами, но вещество распалось на ионы, то молекул будет меньше общего числа частиц (включая и молекулы и ионы), и значит и молярная концентрация будет ниже осмотической. Чтобы перевести молярную концентрацию в осмотическую, нужно знать физические свойства раствора.
В изготовлении лекарственных препаратов фармацевты также учитывают тоничность раствора. Тоничность — свойство раствора, которое зависит от концентрации. В отличие от осмотической концентрации, тоничность — это концентрация веществ, которые не пропускает мембрана. Процесс осмоса заставляет растворы с большей концентрацией перемещаться в растворы с меньшей концентрацией, но если мембрана предотвращает это движение, не пропуская через себя раствор, то возникает давление на мембрану. Такое давление обычно проблематично. Если лекарство предназначено для того, чтобы проникнуть в кровь или другую жидкость в организме, то необходимо уравновесить тоничность этого лекарства с тоничностью жидкости в организме, чтобы избежать осмотического давления на мембраны в организме.
Чтобы уравновесить тоничность, лекарственные препараты нередко растворяют в изотоническом растворе. Изотонический раствор — это раствор столовой соли (NaCL) в воде с такой концентрацией, которая позволяет уравновесить тоничность жидкости в организме и тоничность смеси этого раствора и лекарства. Обычно изотонический раствор хранят в стерильных контейнерах, и вливают его внутривенно. Иногда его используют в чистом виде, а иногда — как смесь с лекарством.
Литература
Автор статьи: Kateryna Yuri
Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.
Перевести единицы: миллимоль на литр [ммоль/л] миллимолярный [мМ или 0.001М] • Гидравлика и гидромеханика — жидкости • Конвертер молярной концентрации • Компактный калькулятор
Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисленияКонвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер паропроницаемости и скорости переноса параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева
1 миллимоль на литр [ммоль/л] = 1 миллимолярный [мМ или 0.001М]
Общие сведения
Факторы, влияющие на молярную концентрацию
Единицы
Как найти молярную концентрацию
Примеры
Применение
В фармацевтике
Общие сведения
Один моль — это количество вещества, в котором содержится такое же число атомов как в 12 граммах углерода-12, то есть 6×10²³ атомов.
Концентрацию раствора можно измерять разными способами, например как отношение массы растворенного вещества к общему объему раствора. В этой статье мы рассмотрим молярную концентрацию, которую измеряют как отношение между количеством вещества в молях к общему объему раствора. В нашем случае вещество — это растворимое вещество, а объем мы измеряем для всего раствора, даже если в нем растворены другие вещества. Количество вещества — это число элементарных составляющих, например атомов или молекул вещества. Так как даже в малом количестве вещества обычно большое число элементарных составляющих, то для измерения количества вещества используют специальные единицы, моли. Один моль равен числу атомов в 12 г углерода-12, то есть это приблизительно 6×10²³ атомов.
Использовать моли удобно в случае, если мы работаем с количеством вещества настолько малым, что его количество легко можно измерить домашними или промышленными приборами. Иначе пришлось бы работать с очень большими числами, что неудобно, или с очень маленьким весом или объемом, которые трудно найти без специализированного лабораторного оборудования. Чаще всего при работе с молями используют атомы, хотя возможно использовать и другие частицы, например молекулы или электроны. Следует помнить, что если используются не атомы, то необходимо это указать. Иногда молярную концентрацию также называют молярностью.
Следует не путать молярность с моляльностью. В отличии от молярности, моляльность — это отношение количества растворимого вещества к массе растворителя, а не к массе всего раствора. Когда растворитель — вода, а количество растворимого вещества по сравнению с количеством воды мало, то молярность и моляльность похожи по значению, но в остальных случаях они обычно отличаются.
Вес одного моля разных веществ. Его можно найти с помощью таблицы Менделеева.
Факторы, влияющие на молярную концентрацию
Молярная концентрация зависит от температуры, хотя эта зависимость сильнее для одних и слабее для других растворов, в зависимости от того, какие вещества в них растворены. Некоторые растворители при повышении температуры расширяются. В этом случае, если растворенные в этих растворителях вещества не расширяются вместе с растворителем, то молярная концентрация всего раствора понижается. С другой стороны, в некоторых случаях с повышением температуры растворитель испаряется, а количество растворимого вещества не меняется — в этом случае концентрация раствора увеличится. Иногда происходит наоборот. Иногда изменение температуры влияет на то, как растворяется растворимое вещество. Например, часть или все растворимое вещество перестает растворяться, и концентрация раствора уменьшается.
Единицы
Молярную концентрацию измеряют в молях на единицу объема, например молях на литр или молях на кубический метр. Моли на кубический метр — это единица СИ. Молярность можно также измерять, используя и другие единицы объема.
Как найти молярную концентрацию
Чтобы найти молярную концентрацию необходимо знать количество и объем вещества. Количество вещества можно вычислить, используя химическую формулу этого вещества и информацию об общей массе этого вещества в растворе. То есть, чтобы узнать количество раствора в молях, узнаем из таблицы Менделеева атомную массу каждого атома в растворе, а потом разделим общую массу вещества на общую атомную массу атомов в молекуле. Перед тем, как складывать вместе атомную массу следует убедиться, что мы умножили массу каждого атома на количество атомов в молекуле, которую мы рассматриваем.
Можно производить вычисления и в обратном порядке. Если известна молярная концентрация раствора и формула растворимого вещества, то можно узнать количество растворителя в растворе, в молях и граммах.
Примеры
Найдем молярность раствора из 20 литров воды и 3-х столовых ложек соды. В одной столовой ложке — примерно 17 грамм, а в трех — 51 грамм. Сода — это гидрокарбонат натрия, формула которого — NaHCO₃. В этом примере мы будем использовать атомы для вычисления молярности, поэтому найдем атомную массу составляющих натрия (Na), водорода (H), углерода (C) и кислорода (O).
Na: 22.989769H: 1.00794C: 12.0107O: 15.9994
Молярная концентрация 1 кубика сахара в чашке чая равна 0,049 моля на литр.
Так как кислород в формуле — O₃, то необходимо умножить атомную массу кислорода на 3. Получим 47,9982. Теперь сложим массы всех атомов и получим 84,006609. Атомную массу указывают в таблице Менделеева в атомных единицах массы, или а. е. м. Наши вычисления тоже в этих единицах. Одна а. е. м. равна массе одного моля вещества в граммах. То есть, в нашем примере — масса одного моля NaHCO₃ равна 84,006609 грамма. В нашей задаче — 51 грамм соды. Найдем молярную массу, разделив 51 грамм на массу одного моля, то есть на 84 грамма, и получим 0,6 моля.
Получается, что наш раствор — это 0,6 моля соды, растворенные в 20 литрах воды. Разделим это количество соды на общий объем раствора, то есть 0,6 моля / 20 л = 0.03 моль/л. Так как в растворе использовали большое количество растворителя и малое количество растворимого вещества, то его концентрация мала.
Рассмотрим другой пример. Найдем молярную концентрацию одного кусочка сахара в чашке чая. Столовый сахар состоит из сахарозы. Сначала найдем вес одного моля сахарозы, формула которой — C₁₂H₂₂O₁₁. Используя таблицу Менделеева, найдем атомные массы и определим массу одного моля сахарозы: 12×12 + 22×1 + 11×16 = 342 грамм. В одном кубике сахара 4 грамма, что дает нам 4/342 = 0,01 молей. В одной чашке около 237 миллилитров чая, значит концентрация сахара в одной чашке чая равна 0,01 моля / 237 миллилитров × 1000 (чтобы перевести миллилитры в литры) = 0,049 моля на литр.
В стехиометрии определяют количество веществ, которые взаимодействуют друг с другом в химической реакции, а также количество веществ, полученных в результате этой реакции.
Молярная концентрация удобна: при одинаковой температуре и давлении один моль разных газов занимает одинаковый объем, и это свойство можно использовать в разных вычислениях.
Молярную концентрацию широко используют в вычислениях, связанных с химическими реакциями. Раздел химии, в котором рассчитывают соотношения между веществами в химических реакциях и часто работают с молями, называется стехиометрией. Молярную концентрацию можно найти по химической формуле конечного продукта, который потом становится растворимым веществом, как в примере с раствором соды, но можно также вначале найти это вещество по формулам химической реакции, во время которой оно образуется. Для этого нужно знать формулы веществ, участвующих в этой химической реакции. Решив уравнение химической реакции, узнаем формулу молекулы растворяемого вещества, а потом найдем массу молекулы и молярную концентрацию с помощью таблицы Менделеева, как в примерах выше. Конечно, можно производить вычисления и в обратном порядке, используя информацию о молярной концентрации вещества.
Когда нам известны вещества, которые вступают в химическую реакцию друг с другом, мы можем узнать формулу, решив уравнение для химической реакции. Добавив полученное в этой реакции вещество в раствор, можно найти молярную концентрацию, как в предыдущих примерах.
Рассмотрим простой пример. На этот раз смешаем соду с уксусом, чтобы увидеть интересную химическую реакцию. И уксус, и соду легко найти — наверняка они есть у вас на кухне. Как уже упоминалось выше, формула соды — NaHCO₃. Уксус — это не чистое вещество, а 5% раствор уксусной кислоты в воде. Формула уксусной кислоты — CH₃COOH. Концентрация уксусной кислоты в уксусе может быть больше или меньше 5%, в зависимости от производителя и страны, в которой она сделана, так как в разных странах концентрация уксуса разная. В этом эксперименте можно не беспокоиться о химических реакциях воды с другими веществами, так как вода не реагирует с содой. Нам важен только объем воды, когда позже мы будем вычислять концентрацию раствора.
Вначале решим уравнение для химической реакции между содой и уксусной кислотой:
NaHCO₃ + CH₃COOH → NaC₂H₃O₂ + H₂CO₃
Продукт реакции — H₂CO₃, вещество, которое из-за низкой стабильности снова вступает в химическую реакцию.
H₂CO₃ → H₂O + CO₂
В результате реакции получаем воду (H₂O), углекислый газ (CO₂) и ацетат натрия (NaC₂H₃O₂). Смешаем полученный ацетат натрия с водой и найдем молярную концентрацию этого раствора, так же, как перед этим мы находили концентрацию сахара в чае и концентрацию соды в воде. При вычислении объема воды необходимо учитывать и воду, в которой растворена уксусная кислота. Ацетат натрия — интересное вещество. Его используют в химических грелках, например в грелках для рук.
Используя стехиометрию для вычисления количества веществ, вступающих в химическую реакцию, или продуктов реакции, для которых мы позже будем находить молярную концентрацию, следует заметить, что только ограниченное количество вещества может вступать в реакцию с другими веществами. Это также влияет на количество конечного продукта. Если молярная концентрация известна, то, наоборот, можно определить количество исходных продуктов методом обратного расчета. Этот метод нередко используют на практике, при расчетах, связанных с химическими реакциями.
При использовании рецептов, будь то в кулинарии, в изготовлении лекарств, или при создании идеальной среды для аквариумных рыбок, необходимо знать концентрацию. В повседневной жизни чаще всего удобнее использовать граммы, но в фармацевтике и химии чаще используют молярную концентрацию.
При изготовлении лекарств, которые контактируют с мембранами в организме, например при изготовлении глазных капель, необходимо уравновесить осмотическую концентрацию лекарства с концентрацией жидкости в организме. Если этого не сделать, то из-за разницы в осмотической концентрации жидкость начнет передвигаться через мембрану, что может вызвать осложнения.
В фармацевтике
При создании лекарств молярная концентрация очень важна, так как от нее зависит, как лекарство влияет на организм. Если концентрация слишком высока, то лекарства могут быть даже смертельны. С другой стороны, если концентрация слишком мала, то лекарство неэффективно. Кроме этого, концентрация важна при обмене жидкостей через клеточные мембраны в организме. При определении концентрации жидкости, которая должна либо проходить, либо, наоборот, не проходить через мембраны, используют либо молярную концентрацию, либо с ее помощью находят осмотическую концентрацию. Осмотическую концентрацию используют чаще, чем молярную. Если концентрация вещества, например лекарства, выше с одной стороны мембраны, по сравнению с концентрацией с другой стороны мембраны, например, внутри глаза, то более концентрированный раствор переместится через мембрану туда, где концентрация меньше. Такой поток раствора через мембрану нередко проблематичен. Например, если жидкость перемещается внутрь клетки, к примеру, в кровеносную клетку, то возможно, что из-за этого переполнения жидкостью мембрана будет повреждена и разорвется. Утечка жидкости из клетки тоже проблематична, так как из-за этого нарушится работоспособность клетки. Любое вызванное медикаментами течение жидкости через мембрану из клетки или в клетку желательно предотвратить, и для этого концентрацию лекарства стараются сделать похожей на концентрацию жидкости в организме, например в крови.
Пациент получает лекарство методом внутривенного вливания из капельницы.
Стоит заметить, что в некоторых случаях молярная и осмотическая концентрация равны, но это не всегда так. Это зависит от того, распалось ли растворенное в воде вещество на ионы в процессе электролитической диссоциации. Вычисляя осмотическую концентрацию, учитывают частицы в общем, в то время как при вычислении молярной концентрации учитывают только определенные частицы, например молекулы. Поэтому если, например, мы работаем с молекулами, но вещество распалось на ионы, то молекул будет меньше общего числа частиц (включая и молекулы и ионы), и значит и молярная концентрация будет ниже осмотической. Чтобы перевести молярную концентрацию в осмотическую, нужно знать физические свойства раствора.
В изготовлении лекарственных препаратов фармацевты также учитывают тоничность раствора. Тоничность — свойство раствора, которое зависит от концентрации. В отличие от осмотической концентрации, тоничность — это концентрация веществ, которые не пропускает мембрана. Процесс осмоса заставляет растворы с большей концентрацией перемещаться в растворы с меньшей концентрацией, но если мембрана предотвращает это движение, не пропуская через себя раствор, то возникает давление на мембрану. Такое давление обычно проблематично. Если лекарство предназначено для того, чтобы проникнуть в кровь или другую жидкость в организме, то необходимо уравновесить тоничность этого лекарства с тоничностью жидкости в организме, чтобы избежать осмотического давления на мембраны в организме.
Чтобы уравновесить тоничность, лекарственные препараты нередко растворяют в изотоническом растворе. Изотонический раствор — это раствор столовой соли (NaCL) в воде с такой концентрацией, которая позволяет уравновесить тоничность жидкости в организме и тоничность смеси этого раствора и лекарства. Обычно изотонический раствор хранят в стерильных контейнерах, и вливают его внутривенно. Иногда его используют в чистом виде, а иногда — как смесь с лекарством.
Литература
Автор статьи: Kateryna Yuri
Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.
Page 2
Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисленияКонвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер паропроницаемости и скорости переноса параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева
1 миллимоль на литр [ммоль/л] = 1 миллимолярный [мМ или 0.001М]
Общие сведения
Факторы, влияющие на молярную концентрацию
Единицы
Как найти молярную концентрацию
Примеры
Применение
В фармацевтике
Общие сведения
Один моль — это количество вещества, в котором содержится такое же число атомов как в 12 граммах углерода-12, то есть 6×10²³ атомов.
Концентрацию раствора можно измерять разными способами, например как отношение массы растворенного вещества к общему объему раствора. В этой статье мы рассмотрим молярную концентрацию, которую измеряют как отношение между количеством вещества в молях к общему объему раствора. В нашем случае вещество — это растворимое вещество, а объем мы измеряем для всего раствора, даже если в нем растворены другие вещества. Количество вещества — это число элементарных составляющих, например атомов или молекул вещества. Так как даже в малом количестве вещества обычно большое число элементарных составляющих, то для измерения количества вещества используют специальные единицы, моли. Один моль равен числу атомов в 12 г углерода-12, то есть это приблизительно 6×10²³ атомов.
Использовать моли удобно в случае, если мы работаем с количеством вещества настолько малым, что его количество легко можно измерить домашними или промышленными приборами. Иначе пришлось бы работать с очень большими числами, что неудобно, или с очень маленьким весом или объемом, которые трудно найти без специализированного лабораторного оборудования. Чаще всего при работе с молями используют атомы, хотя возможно использовать и другие частицы, например молекулы или электроны. Следует помнить, что если используются не атомы, то необходимо это указать. Иногда молярную концентрацию также называют молярностью.
Следует не путать молярность с моляльностью. В отличии от молярности, моляльность — это отношение количества растворимого вещества к массе растворителя, а не к массе всего раствора. Когда растворитель — вода, а количество растворимого вещества по сравнению с количеством воды мало, то молярность и моляльность похожи по значению, но в остальных случаях они обычно отличаются.
Вес одного моля разных веществ. Его можно найти с помощью таблицы Менделеева.
Факторы, влияющие на молярную концентрацию
Молярная концентрация зависит от температуры, хотя эта зависимость сильнее для одних и слабее для других растворов, в зависимости от того, какие вещества в них растворены. Некоторые растворители при повышении температуры расширяются. В этом случае, если растворенные в этих растворителях вещества не расширяются вместе с растворителем, то молярная концентрация всего раствора понижается. С другой стороны, в некоторых случаях с повышением температуры растворитель испаряется, а количество растворимого вещества не меняется — в этом случае концентрация раствора увеличится. Иногда происходит наоборот. Иногда изменение температуры влияет на то, как растворяется растворимое вещество. Например, часть или все растворимое вещество перестает растворяться, и концентрация раствора уменьшается.
Единицы
Молярную концентрацию измеряют в молях на единицу объема, например молях на литр или молях на кубический метр. Моли на кубический метр — это единица СИ. Молярность можно также измерять, используя и другие единицы объема.
Как найти молярную концентрацию
Чтобы найти молярную концентрацию необходимо знать количество и объем вещества. Количество вещества можно вычислить, используя химическую формулу этого вещества и информацию об общей массе этого вещества в растворе. То есть, чтобы узнать количество раствора в молях, узнаем из таблицы Менделеева атомную массу каждого атома в растворе, а потом разделим общую массу вещества на общую атомную массу атомов в молекуле. Перед тем, как складывать вместе атомную массу следует убедиться, что мы умножили массу каждого атома на количество атомов в молекуле, которую мы рассматриваем.
Можно производить вычисления и в обратном порядке. Если известна молярная концентрация раствора и формула растворимого вещества, то можно узнать количество растворителя в растворе, в молях и граммах.
Примеры
Найдем молярность раствора из 20 литров воды и 3-х столовых ложек соды. В одной столовой ложке — примерно 17 грамм, а в трех — 51 грамм. Сода — это гидрокарбонат натрия, формула которого — NaHCO₃. В этом примере мы будем использовать атомы для вычисления молярности, поэтому найдем атомную массу составляющих натрия (Na), водорода (H), углерода (C) и кислорода (O).
Na: 22.989769H: 1.00794C: 12.0107O: 15.9994
Молярная концентрация 1 кубика сахара в чашке чая равна 0,049 моля на литр.
Так как кислород в формуле — O₃, то необходимо умножить атомную массу кислорода на 3. Получим 47,9982. Теперь сложим массы всех атомов и получим 84,006609. Атомную массу указывают в таблице Менделеева в атомных единицах массы, или а. е. м. Наши вычисления тоже в этих единицах. Одна а. е. м. равна массе одного моля вещества в граммах. То есть, в нашем примере — масса одного моля NaHCO₃ равна 84,006609 грамма. В нашей задаче — 51 грамм соды. Найдем молярную массу, разделив 51 грамм на массу одного моля, то есть на 84 грамма, и получим 0,6 моля.
Получается, что наш раствор — это 0,6 моля соды, растворенные в 20 литрах воды. Разделим это количество соды на общий объем раствора, то есть 0,6 моля / 20 л = 0.03 моль/л. Так как в растворе использовали большое количество растворителя и малое количество растворимого вещества, то его концентрация мала.
Рассмотрим другой пример. Найдем молярную концентрацию одного кусочка сахара в чашке чая. Столовый сахар состоит из сахарозы. Сначала найдем вес одного моля сахарозы, формула которой — C₁₂H₂₂O₁₁. Используя таблицу Менделеева, найдем атомные массы и определим массу одного моля сахарозы: 12×12 + 22×1 + 11×16 = 342 грамм. В одном кубике сахара 4 грамма, что дает нам 4/342 = 0,01 молей. В одной чашке около 237 миллилитров чая, значит концентрация сахара в одной чашке чая равна 0,01 моля / 237 миллилитров × 1000 (чтобы перевести миллилитры в литры) = 0,049 моля на литр.
В стехиометрии определяют количество веществ, которые взаимодействуют друг с другом в химической реакции, а также количество веществ, полученных в результате этой реакции.
Молярная концентрация удобна: при одинаковой температуре и давлении один моль разных газов занимает одинаковый объем, и это свойство можно использовать в разных вычислениях.
Молярную концентрацию широко используют в вычислениях, связанных с химическими реакциями. Раздел химии, в котором рассчитывают соотношения между веществами в химических реакциях и часто работают с молями, называется стехиометрией. Молярную концентрацию можно найти по химической формуле конечного продукта, который потом становится растворимым веществом, как в примере с раствором соды, но можно также вначале найти это вещество по формулам химической реакции, во время которой оно образуется. Для этого нужно знать формулы веществ, участвующих в этой химической реакции. Решив уравнение химической реакции, узнаем формулу молекулы растворяемого вещества, а потом найдем массу молекулы и молярную концентрацию с помощью таблицы Менделеева, как в примерах выше. Конечно, можно производить вычисления и в обратном порядке, используя информацию о молярной концентрации вещества.
Когда нам известны вещества, которые вступают в химическую реакцию друг с другом, мы можем узнать формулу, решив уравнение для химической реакции. Добавив полученное в этой реакции вещество в раствор, можно найти молярную концентрацию, как в предыдущих примерах.
Рассмотрим простой пример. На этот раз смешаем соду с уксусом, чтобы увидеть интересную химическую реакцию. И уксус, и соду легко найти — наверняка они есть у вас на кухне. Как уже упоминалось выше, формула соды — NaHCO₃. Уксус — это не чистое вещество, а 5% раствор уксусной кислоты в воде. Формула уксусной кислоты — CH₃COOH. Концентрация уксусной кислоты в уксусе может быть больше или меньше 5%, в зависимости от производителя и страны, в которой она сделана, так как в разных странах концентрация уксуса разная. В этом эксперименте можно не беспокоиться о химических реакциях воды с другими веществами, так как вода не реагирует с содой. Нам важен только объем воды, когда позже мы будем вычислять концентрацию раствора.
Вначале решим уравнение для химической реакции между содой и уксусной кислотой:
NaHCO₃ + CH₃COOH → NaC₂H₃O₂ + H₂CO₃
Продукт реакции — H₂CO₃, вещество, которое из-за низкой стабильности снова вступает в химическую реакцию.
H₂CO₃ → H₂O + CO₂
В результате реакции получаем воду (H₂O), углекислый газ (CO₂) и ацетат натрия (NaC₂H₃O₂). Смешаем полученный ацетат натрия с водой и найдем молярную концентрацию этого раствора, так же, как перед этим мы находили концентрацию сахара в чае и концентрацию соды в воде. При вычислении объема воды необходимо учитывать и воду, в которой растворена уксусная кислота. Ацетат натрия — интересное вещество. Его используют в химических грелках, например в грелках для рук.
Используя стехиометрию для вычисления количества веществ, вступающих в химическую реакцию, или продуктов реакции, для которых мы позже будем находить молярную концентрацию, следует заметить, что только ограниченное количество вещества может вступать в реакцию с другими веществами. Это также влияет на количество конечного продукта. Если молярная концентрация известна, то, наоборот, можно определить количество исходных продуктов методом обратного расчета. Этот метод нередко используют на практике, при расчетах, связанных с химическими реакциями.
При использовании рецептов, будь то в кулинарии, в изготовлении лекарств, или при создании идеальной среды для аквариумных рыбок, необходимо знать концентрацию. В повседневной жизни чаще всего удобнее использовать граммы, но в фармацевтике и химии чаще используют молярную концентрацию.
При изготовлении лекарств, которые контактируют с мембранами в организме, например при изготовлении глазных капель, необходимо уравновесить осмотическую концентрацию лекарства с концентрацией жидкости в организме. Если этого не сделать, то из-за разницы в осмотической концентрации жидкость начнет передвигаться через мембрану, что может вызвать осложнения.
В фармацевтике
При создании лекарств молярная концентрация очень важна, так как от нее зависит, как лекарство влияет на организм. Если концентрация слишком высока, то лекарства могут быть даже смертельны. С другой стороны, если концентрация слишком мала, то лекарство неэффективно. Кроме этого, концентрация важна при обмене жидкостей через клеточные мембраны в организме. При определении концентрации жидкости, которая должна либо проходить, либо, наоборот, не проходить через мембраны, используют либо молярную концентрацию, либо с ее помощью находят осмотическую концентрацию. Осмотическую концентрацию используют чаще, чем молярную. Если концентрация вещества, например лекарства, выше с одной стороны мембраны, по сравнению с концентрацией с другой стороны мембраны, например, внутри глаза, то более концентрированный раствор переместится через мембрану туда, где концентрация меньше. Такой поток раствора через мембрану нередко проблематичен. Например, если жидкость перемещается внутрь клетки, к примеру, в кровеносную клетку, то возможно, что из-за этого переполнения жидкостью мембрана будет повреждена и разорвется. Утечка жидкости из клетки тоже проблематична, так как из-за этого нарушится работоспособность клетки. Любое вызванное медикаментами течение жидкости через мембрану из клетки или в клетку желательно предотвратить, и для этого концентрацию лекарства стараются сделать похожей на концентрацию жидкости в организме, например в крови.
Пациент получает лекарство методом внутривенного вливания из капельницы.
Стоит заметить, что в некоторых случаях молярная и осмотическая концентрация равны, но это не всегда так. Это зависит от того, распалось ли растворенное в воде вещество на ионы в процессе электролитической диссоциации. Вычисляя осмотическую концентрацию, учитывают частицы в общем, в то время как при вычислении молярной концентрации учитывают только определенные частицы, например молекулы. Поэтому если, например, мы работаем с молекулами, но вещество распалось на ионы, то молекул будет меньше общего числа частиц (включая и молекулы и ионы), и значит и молярная концентрация будет ниже осмотической. Чтобы перевести молярную концентрацию в осмотическую, нужно знать физические свойства раствора.
В изготовлении лекарственных препаратов фармацевты также учитывают тоничность раствора. Тоничность — свойство раствора, которое зависит от концентрации. В отличие от осмотической концентрации, тоничность — это концентрация веществ, которые не пропускает мембрана. Процесс осмоса заставляет растворы с большей концентрацией перемещаться в растворы с меньшей концентрацией, но если мембрана предотвращает это движение, не пропуская через себя раствор, то возникает давление на мембрану. Такое давление обычно проблематично. Если лекарство предназначено для того, чтобы проникнуть в кровь или другую жидкость в организме, то необходимо уравновесить тоничность этого лекарства с тоничностью жидкости в организме, чтобы избежать осмотического давления на мембраны в организме.
Чтобы уравновесить тоничность, лекарственные препараты нередко растворяют в изотоническом растворе. Изотонический раствор — это раствор столовой соли (NaCL) в воде с такой концентрацией, которая позволяет уравновесить тоничность жидкости в организме и тоничность смеси этого раствора и лекарства. Обычно изотонический раствор хранят в стерильных контейнерах, и вливают его внутривенно. Иногда его используют в чистом виде, а иногда — как смесь с лекарством.
Литература
Автор статьи: Kateryna Yuri
Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.