Белок плазмы крови называется


Состав плазмы крови. Белки плазмы крови: альбумины, глобулины, фибриноген. СОЭ и ее определение.

Поиск Лекций

Белковую фракцию плазмы составляет несколько десятков различных белков. Большая величина молекул дает основание относить их к коллоидам. Присутствие коллоидов в плазме обусловливает ее вязкость.

общее количество белка в плазме крови в норме составляет 70-90 (60-80) г/л, его определяют с помощью биуретовой реакции. Количество общего белка в крови имеет диагностическое значение.

Повышение общего количества белка в плазме крови называется гиперпротеинемия, снижение – гипопротеинемия. Гиперпротеинемия возникает при дегидратации (относительная), травмах, ожогах, миеломной болезни (абсолютная). Гипопротеинемия наступает при спаде отеков (относительная), голодании, патологии печени, почек, кровопотере (абсолютная).

Кроме общего содержания белков в плазме крови также определяют содержание отдельных групп белков или даже индивидуальных белков. Для этого их разделяют с помощью электроэлектрофореза.

Электрофорез – это метод, при котором вещества с различным зарядом и массой, разделяются в постоянном электрическом поле. Электрофорез проводят на различных носителях, при этом получают разное количество фракций. При электрофорезе на бумаге белки плазмы крови дают 5 фракций: альбумины, α1-глобулины, α2-глобулины, β-глобулины и γ-глобулины. При электрофорезе на агаровом геле получается 7-8 фракций, на крахмальном геле – 16-17 фракций. Больше всего фракций – более 30, дает иммуноэлектрофорез.

Белки плазмы различают по строению и функциональным свойствам. Их количественное и качественное определение производят специальными методами электрофореза, основанного на различной подвижности белков в электрическом поле, ультрацентрифугирования, иммуноэлектрофореза, при котором в электрическом поле передвигаются целые комплексы связанных со специфическими антителами молекул. В плазме крови человека содержится примерно 200—300 г белка. Белки плазмы делят на две основные группы: альбумины и глобулины. В глобулиновую фракцию входит фибриноген.

Альбумины. Альбумины составляют около 60% белков плазмы. Их высокая концентрация, большая подвижность при относительно небольших размерах молекулы, определяют онкотическое давление плазмы. Большая общая поверхность мелких молекул альбумина играет существенную роль в транспорте кровью различных веществ, таких как билирубин, соли тяжелых металлов жирные кислоты, фармакологические препараты (сульфаниламиды, антибиотики и др.). Известно, что, например, одна молекула альбумина может одновременно связать 25—50 молекул билирубина.

Глобулины. Эту группу белков электрофоретически, по показателям подвижности, разделяют на несколько фракций: α1—, α2—, β3— и γ—глобулины. С помощью иммуноэлектрофореза эти фракции подразделяют на мелкие субфракции более однородных белков. Так, во фракции α1—глобулиновимеются белки, простетической группой которых являются углеводы. Эти белки называются гликопротеинами. В составе гликопротеинов циркулирует около 60% всей глюкозы плазмы. Еще одна группа — мукопротеины — содержит мукополисахариды, фракцию аз составляет медьсодержащий белок церулоплазмин, в котором на каждую белковую молекулу приходится восемь атомов меди. Таким образом связывается около 90% всей содержащейся в плазме меди. В плазме имеются еще тироксинсвязывающий и другие белки.

β—глобулины. участвуют в транспорте фосфолипидов, холестерина, стероидных гормонов, металлических катионов. Они удерживают в растворе около 75% всех липидов плазмы. Металлсодержащий белок трансферрин осуществляет перенос железа кровью. Каждая молекула трансферрина несет два атома железа.

γ—глобулины характеризуются самой низкой электрофоретической подвижностью. В эту фракцию белков входят различные антитела, защищающие организм от вторжения вирусов и бактерий. Количество этой фракции возрастает при иммунизации животных. К γ—глобулинам относятся также агглютинины крови.

Фибриноген занимает промежуточное положение между фракциями β— и γ—глобулинов. Этот белок образуется в клетках печени и ретикулоэндотелиальной системы; обладает свойством становиться нерастворимым в определенных условиях (под воздействием тромбина), принимать при этом волокнистую структуру, переходя в фибрин. Содержание фибриногена в плазме крови составляет всего 0,3%, но именно его переходом в фибрин обусловливается свертывание крови и превращение ее в течение нескольких минут в плотный сгусток. Сыворотка крови по своему составу отличается от плазмы только отсутствием фибриногена.

Альбумины и фибриноген образуются в печени, глобулины в печени красном костном мозгу, селезенке, лимфатических узлах. При нормальном питании в организме человека за 1 сут вырабатывается около 17 г альбумина и

5 г глобулина. Период полураспада альбумина составляет 10—15 сут глобулина — 5 сут.

Белки плазмы вместе с электролитами являются ее функциональными элементами. С их помощью в значительной степени осуществляется транспорт веществ из крови к тканям. К числу транспортируемых компонентов относятся питательные вещества, витамины, микроэлементы, гормоны, ферменты а также конечные продукты обмена веществ.

Из питательных веществ самую большую часть составляют липиды. Их концентрация колеблется в широком диапазоне, но максимальное содержание отмечается после приема жирной пищи. На относительно постоянном уровне удерживаются переносимая плазмой глюкоза (44,4—66,6 ммоль/л) и аминокислотные остатки (4 мг%). Витамины могут переноситься либо в связанному белками, либо в свободном виде. Их уровень в плазме также подвержен колебаниям и зависит не только от их содержания в продуктах питания и синтеза кишечной флорой, но и от наличия особого фактора, облегчающего их всасывание в кишке.

Микроэлементы циркулируют в плазме в виде металлсодержащих белков (Со и др.) или белковых комплексов (Fe). Из конечных продуктов обмена наибольшей концентрации, особенно при тяжелой мышечной работе и недостатке кислорода, достигает молочная кислота. Не использованные организмом и подлежащие удалению конечные продукты обмена веществ (мочевина, мочевая кислота, билирубин, аммиак) доставляются плазмой к почкам, где и удаляются с мочой.

Белки плазмы в силу способности связывать большое число циркулирующих в плазме низкомолекулярных соединений участвуют, кроме того, в поддержании постоянства осмотического давления. Им принадлежит ведущая роль в таких процессах, как образование тканевой жидкости, лимфы, мочи, всасывание воды.

6. Минеральный состав плазмы и кровезамещающие растворы:

Искусственные растворы, имеющие одинаковое с кровью осмотическое давление, называются изоосмотическими, или изотоническими. Для теплокровных животных и человека изотоническим раствором является 0,9 % раствор NaCl. Такой раствор называ­ют физиологическим. Растворы, имеющие большее осмотическое давление, чем кровь, называются гипертоническими, а меньшее — гипотоническими.

Изотонический раствор NaCl может некоторое время поддерживать жизнедеятель­ность отдельных органов, например изолированного (вырезанного из организма) сердца лягушки. Однако этот раствор не является полностью физиологическим. Разработаны рецепты растворов, соответствующие своим составом содержанию отдельных солей в плазме. Они являются в большей мере физиологическими, чем изотонический раствор NaCl. Наибольшее распространение получили растворы Рингера, Рингера-Локка и Тиро-де

Рекомендуемые страницы:

Назовите функции белков плазмы крови.

Ответ: Транспортная, имуннологичесая, гемостатическая, буфферная, от концентрации белков плазмы крови зависит объем циркулирующей крови.

2. Как называется изменение соотношения фракций белков сыворотки крови?

Ответ: Диспротеинэмия.

3. Назовите белки острой фазы воспаления. Какую биологическую роль они выполняют?

Ответ: С-реактивный белок, α1-антитрипсин, гаптоглобин, фибриноген. Принимает участие в развитии восполительной реакции организма.

4. Какие белки относятся к α1-глобулинам? Их биологическая роль?

Ответ: α1-Антитрипсин ингибирует некоторых протеиназ.

ЛПВП –транспорт холестерола.

Протромбин – второй фактор свертывания крови.

Кислый α1- гликопротеин – Транспорт прогестерона

Тироксинсвязывающий глобулин – Транспорт тироксина и трийодотиронина.

5. Какие белки относятся к α2-глобулинам? Их биологическая роль?

Ответ: Церулоплазмин – транспорт ионов меди, оксидоредуктаза.

Антитромбин 3 - ингибитор плазменных протеаз.

Гаптоглобин – Связывание гемоглабина.

α2-Макроглобулин – Ингибитор плазменных протеиназ, транспорт цинка.

Ретинолсвязывающий белок – Транспорт ретинола

Витамин D связывающий белок – Транспорт кальциферола

6. Какие белки относятся к b-глобулинам? Их биологическая роль?

Ответ: ЛПНП – Транспорт холестерола

Трансферин – Транспорт ионов железа

Фибриноген – Первый фактор свёртывания крови

Транскобаламин – Транспорт витамина В12

Глобулин связывающий белок – Транспорт тестостерона и эстрадиола

С-реактивний белок – активация комплемента

7. Какую биологическую роль выполняет C-реактивный белок?

Ответ: Взаимодействует с С-полисахаридом пневмоккоков. Стимулируют активация комплемента.

8. На чем основан метод электрофореза белков?

Ответ: на разные молекулярной массы и разные заряды белков.

9. Какая концентрация общего белка, альбуминов и глобулинов может быть в сыворотке крови здорового человека?

Ответ: 65-85 г/л(60-80 г/л)

10. Где синтезируется альбумин?

Ответ: в гепатоцитах.

11. Какие вещества может транспортировать в крови альбумин?

Ответ: транспорт жирных кислот, билирубина, жёлчных кислот, стероидных гормонов, лекарств, неорганические ионов.

12. Назовите возможные причины гипоальбуминемии.

Ответ: 1) Снижение синтеза в печени(недостаточное поступление белка с пищей, острые и хронические заболевания печени).

2) увеличение потери из организма через кожу (при термических ожогах),

3) почки (протеинурия при нефротическом синдроме, сахарном диабете),

4) желудочно-кишечный тракт (острые кишечные инфекции, желудочно-кишечные кровотечения);

5) усиление катаболизма (лихорадочные состояния, тиреотоксикоз);

6) увеличение объема плазмы крови (массивные инфузии солевых растворов).

13. Какие последствия может иметь гипоальбуминемия?

Овет: Отёки. Уменьшение ОЦК и падение АД, что клинически проявляется как шок.

14. Назовите возможные причины гиперальбуминемии.

Ответ: рвота, диарея и другие, приводящей к снижению содержания воды в плазме.

(Надеюсь, что вам поможет.)

©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.

Как называется растворимый белок плазмы крови

Вопрос 11. Гемостаз. Определение, механизм. Факторы свертывания крови. Противосвертывающая система крови. Гемолиз и его виды.

Гемостаз— система, включающая в себя процессы:

Оглавление:

Остановки кровотечения после травматического повреждения сосудов;

Поддержание крови в жидком состоянии;

Включает компоненты, способствующие растворению тромбов.

Гемостаз проходит в 3 стадии:

тромбоцитарный = первичный гемостаз (3-5 мин) — сужение кровеносных сосудов, заканчивается образованием белого тромба;

гемокоагуляционный = вторичный гемостаз (10-30 мин). Включает 3 этапа:

Прокоагулянтный — активирование протромбокиназы и превращение протромбина в тромбин;

Коагуляция — образование рыхлого фибринового сгустка;

Ретракция — образование плотного красного фибринового тромба.

Фибринолиз — растворение красного фибринового тромба с целью восстановления микроциркуляции в сосуде.

Существует противосвертывающая система крови, которая направлена на ограничение распространения тромба местом повреждения сосуда.

Свёртывающая, противосвёртывающая, фибринолитическая системы крови.

Остановка кровотечения, т.е. гемостаз может осуществляться двумя путями. При повреждении мелких сосудов она происходит за счет первичного или сосудисто-тромбоцитарного гемостаза. Он обусловлен сужением сосудов и закупоркой отверстия склеившимися тромбоцитами. При повреждении этих сосудов происходит прилипание или адгезия тромбоцитов к краям раны. Из тромбоцитов начинают выделяться АДФ, адреналин и серотонин. Серотонин и адреналин суживают сосуд. Затем АДФ вызывает агрегацию, т.е. склеивание тромбоцитов. Это обратимая агрегация. После, под влиянием тромбина, образующегося в процессе вторичного гемостаза, развивается необратимая агрегация большого количества тромбоцитов. Образуется тромбоцитарный тромб, который уплотняется, т.е. происходит его ретракция. За счет первичного гемостаза кровотечение останавливается в течение 1-3 минут.

Вторичный гемостаз или гемокоагуляция, это ферментативный процесс образования желеобразного сгустка — тромба. Он происходит в результате перехода растворенного в плазме белка фибриногена в нерастворимый фибрин. Образование фибрина осуществляется в несколько этапов и при участии ряда факторов свертывания крови. Они называются прокоагулянтами, так как до кровотечения находятся в неактивной форме. В зависимости от местонахождения факторы свертывания делятся на плазменные, тромбоцитарные, тканевые, эритроцитарные и лейкоцитарные. Основную роль в механизмах тромбообразования играют плазменные и тромбоцитарные факторы.

Выделяют следующие плазменные факторы, обозначаемые римскими цифрами:

I. Фибриноген. Это растворимый белок плазмы крови.

Источник: http://vikidalka.ru/.html

Белки плазмы крови.

Тема 1. БИОЛОГИЧЕСКАЯ РОЛЬ БЕЛКОВЫХ И НЕБЕЛКОВЫХ КОМПОНЕНТОВ ПЛАЗМЫ КРОВИ.

Практическая значимость темы. Кровь является важнейшим и наиболее доступным объектом биохимического исследования. Наиболее изученные компоненты крови — это гемоглобин, альбумин, иммуноглобулины и разнообразные факторы свёртывания. При различных заболеваниях наблюдаются изменения уровня белков в плазме; эти изменения можно обнаружить при электрофорезе. Важным диагностическим признаком при некоторых патологических состояниях служит повышение активности некоторых ферментов плазмы крови. Определение содержания небелковых компонентов плазмы (глюкоза, мочевина, холестерол, билирубин и др.) также используется в диагностике заболеваний.

Цель занятия. После изучения данной темы студент должен знать состав и биологическую роль различных групп белков, небелковых азотистых компонентов (остаточного азота), безазотистых органических соединений и минеральных веществ, входящих в состав плазмы крови; уметь применять полученные знания при решении теоретических и практических задач.

  1. Строение и биологические функции аминокислот и белков, жирных кислот и липидов, моно- и полисахаридов.
  2. Участие минеральных веществ в процессах жизнедеятельности.
  3. Кислотно-основные свойства биологических макромолекул.
  4. Гидрофильные и гидрофобные свойства биологических макромолекул.
  5. Механизмы регуляции активности ферментов.

Кровь — жидкая подвижная ткань, циркулирующая в замкнутой системе кровеносных сосудов, транспортирующая различные химические вещества к органам и тканям, и осуществляющая интеграцию метаболических процессов, протекающих в различных клетках.

Кровь состоит из плазмы и форменных элементов (эритроцитов, лейкоцитов и тромбоцитов). Сыворотка крови отличается от плазмы отсутствием фибриногена. 90% плазмы крови составляет вода, 10% — сухой остаток, в состав которого входят белки, небелковые азотистые компоненты (остаточный азот), безазотистые органические компоненты и минеральные вещества.

Плазма крови содержит сложную многокомпонентную (более 100) смесь белков, различающихся по происхождению и функциям. Большинство белков плазмы синтезируется в печени. Иммуноглобулины и ряд других защитных белков иммунокомпетентными клетками.

Содержание общего белка в сыворотке крови здорового человека составляетг/л (в плазме крови этот показатель на 2 – 4 г/л выше за счёт фибриногена).

1.2.1. Белковые фракции. При помощи высаливания белков плазмы можно выделить альбуминовую и глобулиновую фракции. В норме соотношение этих фракций составляет 1,5 – 2,5. Использование метода электрофореза на бумаге позволяет выявить 5 белковых фракций (в порядке убывания скорости миграции): альбумины, α1-, α2-, β- и γ-глобулины. При использовании более тонких методов фракционирования в каждой фракции, кроме альбуминовой, можно выделить целый ряд белков (содержание и состав белковых фракций сыворотки крови см. рисунок 1).

Рисунок 1. Электрофореграмма белков сыворотки крови и состав белковых фракций.

Альбумины – белки с молекулярной массой околоДа. Благодаря гидрофильности и высокому содержанию в плазме играют важную роль в поддержании коллоидно-осмотического (онкотического) давления крови и регуляции обмена жидкостей между кровью и тканями. Выполняют транспортную функцию: осуществляют перенос свободных жирных кислот, желчных пигментов, стероидных гормонов, ионов Са 2+ , многих лекарств. Альбумины также служат богатым и быстро реализуемым резервом аминокислот.

  • Кислый α1-гликопротеин (орозомукоид) – содержит до 40% углеводов, изоэлектрическая точка его находится в кислой среде (2,7). Функция этого белка до конца не установлена; известно, что на ранних стадиях воспалительного процесса орозомукоид способствует образованию коллагеновых волокон в очаге воспаления (Я.Мусил, 1985).
  • α1-Антитрипсин – ингибитор ряда протеаз (трипсина, химотрипсина, калликреина, плазмина). Врождённое снижение содержания α1-антитрипсина в крови может быть фактором предрасположенности к бронхо-лёгочным заболеваниям, так как эластические волокна лёгочной ткани особенно чувствительны к действию протеолитических ферментов.
  • Ретинолсвязывающий белок осуществляет транспорт жирорастворимого витамина А.
  • Тироксинсвязывающий белок – связывает и транспортирует иодсодержащие гормоны щитовидной железы.
  • Транскортин – связывает и транспортирует глюкокортикоидные го рмоны (кортизол, кортикостерон).
  • Гаптоглобины (25% α2-глобулинов) – образуют стабильный комплекс с гемоглобином, появляющимся в плазме в результате внутрисосудистого гемолиза эритроцитов. Комплексы гаптоглобин-гемоглобин поглощаются клетками РЭС, где гем и белковые цепи подвергаются распаду, а железо повторно используется для синтеза гемоглобина. Тем самым предотвращается потеря железа организмом и повреждение почек гемоглобином.
  • Церулоплазмин – белок, содержащий ионы меди (одна молекула церулоплазмина содержит 6-8 ионов Cu 2+ ), которые придают ему голубую окраску. Является транспортной формой ионов меди в организме. Обладает оксидазной активностью: окисляет Fe 2+ в Fe 3+ , что обеспечивает связывание железа трансферрином. Способен окислять ароматическиеамины, участвует в обмене адреналина, норадреналина, серотонина.
  • Трансферрин – главный белок β-глобулиновой фракции, участвует в связывании и транспорте трёхвалентного железа в различные ткани, особенно в кроветворные. Трансферрин регулирует содержание Fe 3+ в крови, предотвращает избыточное накопление и потерю с мочой.
  • Гемопексин – связывает гем и предотвращает его потерю почками. Комплекс гем-гемопексин улавливается из крови печенью.
  • С-реактивный белок (С-РБ) – белок, способный преципитировать (в присутствии Са 2+ ) С-полисахарид клеточной стенки пневмококка. Биологическая роль его определяется способностью активировать фагоцитоз и ингибировать процесс агрегации тромбоцитов. У здоровых людей концентрация С-РБ в плазме ничтожно мала и стандартными методами не определяется. При остром воспалительном процессе она увеличивается более чем в 20 раз, в этом случае С-РБ обнаруживается в крови. Исследование С-РБ имеет преимущество перед другими маркерами воспалительного процесса: определением СОЭ и подсчётом числа лейкоцитов. Данный показатель более чувствителен, его увеличение происходит раньше и после выздоровления быстрее возвращается к норме.
  • Иммуноглобулины (IgA, IgG, IgM, IgD, IgE) представляют собой антитела, вырабатываемые организмом в ответ на введение чужеродных веществ с антигенной активностью. Подробнее об этих белках см. 1.2.5.

1.2.2. Количественные и качественные изменения белкового состава плазмы крови. При различных патологических состояниях белковый состав плазмы крови может изменяться. Основными видами изменений являются:

  • Гиперпротеинемия — увеличение содержания общего белка плазмы. Причины: потеря большого количества воды (рвота, диарея, обширные ожоги), инфекционные заболевания (за счёт увеличения количества γ-глобулинов).
  • Гипопротеинемия — уменьшение содержания общего белка в плазме. Наблюдается при заболеваниях печени (вследствие нарушения синтеза белков), при заболеваниях почек (вследствие потери белков с мочой), при голодании (вследствие недостатка аминокислот для синтеза белков).
  • Диспротеинемия — изменение процентного соотношения белковых фракций при нормальном содержании общего белка в плазме крови, например, снижение содержания альбуминов и увеличение содержания одной или нескольких глобулиновых фракций при различных воспалительных заболеваниях.
  • Парапротеинемия — появление в плазме крови патологических иммуноглобулинов — парапротеинов, отличающихся от нормальных белков по физико-химическим свойствам и биологической активности. К таким белкам относятся, например, криоглобулины, образующие друг с другом преципитаты при температуре ниже 37° С. Парапротеины обнаруживаются в крови при макроглобулинемии Вальденстрема, при миеломной болезни (в последнем случае они могут преодолевать почечный барьер и обнаруживаться в моче как белки Бенс-Джонса). Парапротеинемия, как правило, сопровождается гиперпротеинемией.

1.2.3. Липопротеиновые фракции плазмы крови. Липопротеины — сложные соединения, осуществляющие транспорт липидов в крови. В состав их входят: гидрофобное ядро, содержащее триацилглицеролы и эфиры холестерола, и амфифильная оболочка, образованная фосфолипидами, свободным холестеролом и белками-апопротеинами (рисунок 2). В плазме крови человека содержатся следующие фракции липопротеинов:

Рисунок 2. Схема строения липопротеина плазмы крови.

  • Липопротеины высокой плотности или α-липопротеины, так как при электрофорезе на бумаге они движутся вместе с α-глобулинами. Содержат много белков и фосфолипидов, транспортируют холестерол из периферических тканей в печень.
  • Липопротеины низкой плотности или β-липопротеины, так как при электрофорезе на бумаге они движутся вместе с β-глобулинами. Богаты холестеролом; транспортируют его из печени в периферические ткани.
  • Липопротеины очень низкой плотности или пре-β-липопротеины (на электрофореграмме расположены между α- и β-глобулинами). Служат транспортной формой эндогенных триацилглицеролов, являются предшественниками липопротеинов низкой плотности.
  • Хиломикроны — электрофоретически неподвижны; в крови, взятой натощак, отсутствуют. Являются транспортной формой экзогенных (пищевых) триацилглицеролов.

1.2.4. Белки острой фазы воспаления. Это белки, содержание которых увеличивается в плазме крови при остром воспалительном процессе. К ним относятся, например, следующие белки:

Скорость синтеза этих белков увеличивается прежде всего за счёт снижения образования альбуминов, трансферрина и альбуминов (небольшая фракция белков плазмы, обладающая наибольшей подвижностью при диск-электрофорезе, и которой соответствует полоса на электрофореграмме перед альбуминами), концентрация которых при остром воспалении снижается.

Биологическая роль белков острой фазы: а) все эти белки являются ингибиторами ферментов, освобождаемых при разрушении клеток, и предупреждают вторичное повреждение тканей; б) эти белки обладают иммунодепрессорным действием (В.Л.Доценко, 1985).

1.2.5. Защитные белки плазмы крови. К белкам, выполняющим защитную функцию, относятся иммуноглобулины и интерфероны.

Иммуноглобулины (антитела) — группа белков, вырабатываемых в ответ на попадание в организм чужеродных структур (антигенов). Они синтезируются в лимфоузлах и селезёнке лимфоцитами В. Выделяют 5 классов иммуноглобулинов — IgA, IgG, IgM, IgD, IgE.

Рисунок 3.Схема строения иммуноглобулинов (серым цветом показана вариабельная область, не закрашена — константная область).

Молекулы иммуноглобулинов имеют единый план строения. Структурную единицу иммуноглобулина (мономер) образуют четыре полипептидные цепи, соединённые между собой дисульфидными связями: две тяжёлые (цепи Н) и две лёгкие (цепи L) (см. рисунок 3). IgG, IgD и IgЕ по своей структуре, как правило, являются мономерами, молекулы IgM построены из пяти мономеров, IgA состоят из двух и более структурных единиц, или являются мономерами.

Белковые цепи, входящие в состав иммуноглобулинов, можно условно разделить на специфические домены, или области, имеющие определённые структурные и функциональные особенности.

N-концевые участки как L-, так и Н-цепей называются вариабельной областью (V), так как их структура характеризуется существенными различиями у разных классов антител. Внутри вариабельного домена имеются 3 гипервариабельных участка, отличающихся наибольшим разнообразием аминокислотной последовательности. Именно вариабельная область антител ответственна за связывание антигенов по принципу комплементарности; первичная структура белковых цепей в этой области определяет специфичность антител.

С-концевые домены Н- и L-цепей обладают относительно постоянной первичной структурой в пределах каждого класса антител и называются константной областью (С). Константная область определяет свойства различных классов иммуноглобулинов, их распределение в организме, может принимать участие в запуске механизмов, вызывающих уничтожение антигенов.

Интерфероны — семейство белков, синтезируемых клетками организма в ответ на вирусную инфекцию и обладающих противовирусным эффектом. Различают несколько типов интерферонов, обладающих специфическим спектром действия: лейкоцитарный (α-интерферон), фибробластный (β-интерферон) и& иммунный (γ-интерферон). Интерфероны синтезируются и секретируются одними клетками и проявляют свой эффект, воздействуя на другие клетки, в этом отношении они подобны гормонам. Механизм действия интерферонов показан на рисунке 4.

Рисунок 4.Механизм действия интерферонов (Ю.А.Овчинников, 1987).

Связываясь с клеточными рецепторами, интерфероны индуцируют синтез двух ферментов — 2′,5′-олигоаденилатсинтетазы и протеинкиназы, вероятно, за счет инициации транскрипции соответствующих генов. Оба образующихся фермента проявляют свою активность в присутствии двухцепочечных РНК, а именно такие РНК являются продуктами репликации многих вирусов или содержатся в их вирионах. Первый фермент синтезирует 2′,5′-олигоаденилаты (из АТФ), которые активируют клеточную рибонуклеазу I; второй фермент фосфорилирует фактор инициации трансляции IF2. Конечным результатом этих процессов является ингибирование биосинтеза белка и размножения вируса в инфицированной клетке (Ю.А.Овчинников, 1987).

1.2.6. Ферменты плазмы крови. Все ферменты, содержащиеся в плазме крови, можно разделить на три группы:

  1. секреторные ферменты — синтезируются в печени, выделяются в кровь, где выполняют свою функцию (например, факторы свёртывания крови);
  2. экскреторные ферменты — синтезируются в печени, в норме выделяются с желчью (например, щелочная фосфатаза), их содержание и активность в плазме крови возрастает при нарушении оттока желчи;
  3. индикаторные ферменты — синтезируются в различных тканях и попадают в кровь при разрушении клеток этих тканей. В разных клетках преобладают различные ферменты, поэтому при повреждении того или иного органа в крови появляются характерные для него ферменты. Это может быть использовано в диагностике заболеваний.

Например, при повреждении клеток печени (гепатит) в крови возрастает активность аланинаминотраноферазы (АЛТ), аспартатаминотрансферазы (ACT), изофермента лактатдегидрогеназы ЛДГ5, глутаматдегидрогеназы, орнитинкарбамоилтрансферазы.

При повреждении клеток миокарда (инфаркт) в крови возрастает активность аспартатаминотрансферазы (ACT), иэофермента лактатдегидрогеназы ЛДГ1, изофермента креатинкиназы MB.

При повреждении клеток поджелудочной железы (панкреатит) в крови возрастает активность трипсина, α-амилазы, липазы.

Источник: http://helpiks.org/.html

Белки плазмы крови

Значение белков плазмы крови многообразно:

  1. Белки обусловливают возникновение онкотического давления (см. ниже), величина которого важна для регулирования водного обмена между кровью и тканями.
  2. Белки, обладая буферными свойствами, поддерживают кислотно-щелочное равновесие крови.
  3. Белки обеспечивают плазме крови определенную вязкость, имеющую значение в поддержании уровня артериального давления.
  4. Белки плазмы способствуют стабилизации крови, создавая условия, препятствующие оседанию эритроцитов.
  5. Белки плазмы играют важную роль в свертывании крови.
  6. Белки плазмы крови являются важными факторами иммунитета, т. е. невосприимчивости к заразным заболеваниям.

В плазме крови содержится несколько десятков различных белков, которые составляют три основные группы: альбумины, глобулины и фибриноген. Для разделения белков плазмы с 1937 г. применяется метод электрофореза, основанный на том, что различные белки обладают неодинаковой подвижностью в электрическом поле. С помощью электрофореза глобулины разделены на несколько фракций: α1-, α2-, β и γ — глобулины.

Электрофоретическая диаграмма белков плазмы крови приведена на рис. 1. Гамма-глобулины имеют важное значение в защите организма от вирусов, бактерий и их токсинов.

Это обусловлено тем, что так называемые антитела являются в основном γ-глобулинами. Введение их больным повышает сопротивляемость организма по отношению к инфекциям. В последнее время в плазме крови найден белковый комплекс, играющий аналогичную роль,— пропердин.

Соотношение между количеством различных белковых фракций при некоторых заболеваниях изменяется и поэтому исследование белковых фракции имеет диагностическое значение.

Главным местом образования белков плазмы крови является печень. Она синтезирует альбумины и фибриноген. Глобулины же синтезируются не только в печени, но и в костном мозгу, селезенке, лимфатических узлах, т. е. в органах, относящихся к ретикуло-эндотелиальной системе организма. Во всей плазме крови содержится примерно 200—300 г белков. Обмен их происходит быстро благодаря непрерывному синтезу и распаду.

Рис.1. Кривая разделения белков плазмы крови человека, полученная при электрофорезе.

Осмотическое давление белков плазмы крови

Хотя абсолютное количество белков плазмы крови равняется 7—8% и почти в 10 раз превосходит количество растворенных солеи, создаваемое ими онкотическое давление составляет всего лишь около 1/200 части осмотического давления плазмы (равного 7,6—8,1 атм.), т. е. 0,03—0,04 атм. (25—30 мм рт. ст.). Это обусловлено тем, что молекулы белков имеют очень крупные размеры и число их в плазме во много раз меньше числа молекул кристаллоидов.

Несмотря на свою малую величину, онкотическое давление играет исключительно важную роль в обмене воды между кровью и тканями. Онкотическое давление влияет на те физиологические процессы, в основе которых лежат явления фильтрации, (образование межтканевой жидкости, лимфы, мочи, всасывание воды в кишечнике). Крупные молекулы белков плазмы, как правило, не проходят через эндотелиальную стенку капилляров. Оставаясь внутри кровеносного русла, они удержчвают в крови некоторое количество воды (в соответствии с величиной их осмотического давления). Этим они способствуют сохранению относительного постоянства содержания воды в крови и тканях.

Способность белков крови удерживать воду в сосудистом русле можно доказать следующим опытом. Если производить собаке многократные кровопускания и с помощью центрифугирования отделять плазму взятой крови от эритроцитов, а последние вводить обратно в кровь в солевом растворе, то таким способом можно сильно снизить количество белков в крови. При этом у животного возникают значительные отеки. В эксперименте с изолированными органами при длительном пропускании через них раствора Рингера или Рингера — Локка наступает отек тканей. Если заменить физиологический раствор кровяной сывороткой, то начавшийся отек можно уничтожить. Именно этим объясняется необходимость вводить в состав кровезамещающих растворов коллоидные вещества. При этом онкотическое давление и вязкость таких растворов подбирают так, чтобы они были равны вязкости и онкотическому давлению крови.

Источник: http://www.amedgrup.ru/belkikrov.html

Назначение белка плазмы крови

Белков человеческий организм вырабатывает очень много, они разнообразны по составу и выполняемой работе, однако белок плазмы крови играет важнейшую роль во множестве процессов, без которых жизнь человека станет невозможной.

Функции белков

Белки плазмы крови очень разнообразны. У человека насчитывается около ста типов белков. При ОАК (общий анализ крови) количество белка плазмы крови сигнализирует о том, как осуществляется в организме синтез аминокислот.

Обменные процессы, проходящие с помощью белков, указывают на то, насколько хорошо организм способен справиться с различными недугами: от проникновения инфекции до разрыва капилляров стенок сосудов.

В основном белки плазмы крови производятся в печени, но некоторые синтезируются в тканях костного мозга и лимфатических узлах.

Функции белков плазмы крови огромны и зависят от спецификации того или иного вида белка. В основном их функции заключаются в поддержании нужного коллоидно-осмотического давления крови в сосудах, однако у белков есть и множество других задач.

Вот некоторые из них:

  • количество белков прямо пропорционально способности крови к сворачиванию;
  • белки обеспечивают кислотно-щелочное равновесие внутренней среды организма, являясь буферной кровяной системой;
  • плазменный белок альбумин и некоторые другие белки осуществляют транспорт к внутренним органам холестерина, билирубина и медикаментозных средств;
  • система комплемента и глобулины обеспечивают баланс гуморального иммунитета организма;
  • защищают от повреждения клетки крови и стенки сосудов;
  • деятельность белков по созданию нужного запаса аминокислот в русле крови обеспечивает организму нормальное функционирование в период недостатка питательных веществ;
  • отдельные виды белков способны расширять сосуды, снижая при этом артериальное давление, другие – наоборот, сужают сосуды в случае необходимости, и таким образом АД увеличивается.

Чтобы определить количество белков кровяной плазмы, делают биохимический анализ образца крови.

Отклонение от нормы количества белков того или иного вида, нарушения в их строении являются признаками различных недугов.

Однако ориентироваться при постановке диагноза только на белковый состав крови было бы неверно – ведь при всем своем многообразии белки кровяной плазмы составляют всего лишь около 7-8 % от числа всех белковых клеток организма.

Поэтому врачи оперируют совокупностью всех данных анализов и обследований пациента при диагностике и определении терапевтического курса лечения.

В зависимости от такого качества белковых молекул, как водо- растворимость или нерастворимость, белки могут называться простыми или сложными.

К простым белковым молекулам относится такой тип растворимого белка плазмы крови, как альбумин. Грубо говоря, все остальные белки относятся к сложным белковым структурам.

Как называется тот или иной нерастворимый белок плазмы крови, можно узнать, разделяя белки на фракции.

Это делается разными методами, но наиболее распространенным способом разделения по фракциям белков плазмы крови считается электрофорез.

Электрофорезный метод распределения белковых молекул по фракциям заключается в том, что разные белки под действием тока по-разному движутся на носителе.

В качестве последнего берут ацетатцеллюлозную пленку, на которую наносят сыворотку крови.

Пленку помещают на специальную рамку таким образом, чтобы ее края находились в емкостях с электролитом.

После пропускания электрического тока белки малого размера, обладающие наибольшим зарядом (альбумины), перемещаются быстрее остальных.

Глобулины, как наиболее крупные и электронейтральные молекулы, практически не двигаются по пленке.

Белковые фракции

Существуют способы, используя которые, можно выделить более 20 фракций белков, однако в обычных лабораторных условиях чаще всего используют электрофорезный метод фракционирования.

При помощи электрофореза выделяют пять белковых фракций:

Альбуминов в плазме крови больше всего. Они производятся печенью в большом количестве.

Срок жизни альбуминов очень мал – за сутки этих белковых молекул синтезируется и распадается порядка 11 — 15 г.

Именно их функцией является поддержка нужного давления в осмосе крови, поскольку альбумины – это растворимые белки, обладают наименьшей массой среди всех остальных белковых молекул.

Альбумины влияют на степень свертываемости крови, кислотно-щелочной баланс, осуществляют доставку длинноцепочечных кислот, билирубина, гормонов, лекарств к внутренним органам.

Альбумин нейтрализует ионы Ca₂+ и Mg₂+. Кроме всего этого, альбумины создают в плазме крови резервные запасы нужных аминокислот.

Глобулины фракции α1 производятся тканями костного мозга. Это нерастворимые белковые структуры с небольшой массой.

Тем не менее, α1— глобулины гидрофильны, что позволяет им осуществлять транспортировку жиров.

Такие α1— глобулины, как протромбин, участвуют в процессе свертываемости крови, оказывают угнетающее действие на некоторые ферменты.

В большинстве своем α2-глобулины синтезирует печень, однако примерно 25 % их производят ткани костного мозга.

Это биполимерные структуры, основной функцией которых является регуляторная деятельность.

Макроглобулин отвечает за острую фазу воспалительных явлений в организме, гаптоглобин в комплексе с гемоглобином предотвращает анемии, а при помощи церулоплазмина в тканях поддерживается баланс меди.

β-глобулины наполовину производятся в печени, наполовину – в костном мозге.

К ним относятся:

  • фибриноген, участвующий в образовании фибриновых нитей на месте порыва сосуда или капилляра;
  • липопротеиновые белковые структуры низкой плотности;
  • транскобаламин, ответственный за синтез витамина B₁₂;
  • трансферин, осуществляющий доставку железа к тканям;
  • белковые структуры, составляющие систему комплемента;
  • β-липопротеиды, переносящие фосфолипиды и холестерин.

Производство γ — глобулинов в основном происходит при помощи В-лимфоцитов, но 1/10 часть их синтезируется куперовскими парными клетками.

В эту фракцию плазменных белков входят иммуноглобулины, которые защищают организм от проникновения чужеродных клеток путем выработки антител к ним.

Что такое диспротеинемия?

Нормальные концентрации белковых фракций в плазме крови у здорового человека представлены в таблице ниже.

Биохимические исследования белковых фракций при помощи электрофореза позволяют определить отклонения концентраций белковых структур от нормального состояния.

Такого рода патология называется диспротеинемией, которая бывает двух видов:

Гиперпротеинемия, или увеличение количества белков в плазме крови, может иметь относительный или абсолютный характер.

Относительная гиперпротеинемия считается состоянием организма, которое при должной терапии причин патологии само придет в норму.

Бывает при травмах, порезах, ожогах, обезвоживании от рвоты. Абсолютная гиперпротеинемия возникает при увеличении в крови концентрации γ-глобулинов.

Ее часто называют γ — глобулинемией. Причиной такого состояния чаще всего бывают воспалительные процессы в хронической или острой фазе.

Однако и значительная концентрация α1— глобулина тоже может иметь причины инфекционных поражений организма, полостных операций, травм, болезней печени.

Гипопротеинемия чаще всего возникает в случае недостатка в плазме крови альбуминов.

Такое состояние возникает при следующих патологиях:

  • из-за недостатка производства альбуминов печенью вследствие снижения функциональных способностей этого органа;
  • при значительной утилизации белков при обширных ожогах;
  • при злокачественных опухолях;
  • в результате тяжелого септического состояния;
  • при нефротическом синдроме;
  • вследствие длительного голодания;
  • при обильной кровопотере.

Однако чаще всего диспротеинемия сопровождается уменьшением количества белков одной фракции и увеличением другой.

Электрофорез позволяет отличить острую стадию воспалительных процессов от хронической.

При острой стадии концентрация альбуминов в плазме крови низкая, зато увеличивается число глобулинов α1— и α2— фракций.

При хронической стадии воспалительного процесса в плазме крови возрастает концентрация -глобулинов.

Заболевания печени характеризуются снижением альбуминов и увеличением количества β-глобулинов.

Тем не менее, существуют состояния организма человека, при которых диспротеинемия считается физиологическим явлением.

К примеру, у новорожденных детей количество белков всех фракций снижено, и только к двум-трем годам жизни постепенно показатели протеинограммы у них приходят в норму.

У беременных женщин при гестозе концентрация белков в плазме крови тоже может быть понижена.

Несмотря на то что биохимический анализ крови с определением концентраций белков по фракциям может предоставлять врачам много нужной и полезной информации, ориентироваться только на протеинограмму при постановке диагноза никто не будет, потому что некоторые болезни могут давать одни и те же варианты изменения концентрации белков в плазме крови.

К примеру, при нефротическом синдроме происходит уменьшение концентрации альбуминов, α1— и γ-глобулинов и увеличивается число α2— и β-глобулинов.

Диспротеинемия такого же рода может отмечаться и при других недугах, сопровождающихся изменением количества белков разных фракций.

Источник: http://moydiagnos.ru/analizi/krovi/belok-plazmy.html

Белки плазмы крови

Белки являются важной составной частью крови и выполняют следующие функции:

1) определяют онкотическое давление;

2) обеспечивают вязкость крови;

3) обеспечивают свертываемость крови;

4) участвуют в регуляции кислотно-основного равновесия;

5) выполняют транспортную функцию (переносят липиды, НЭЖК, металлы, билирубин, гемоглобин, гор­моны, лекарственные вещества);

6) обеспечивают иммунитет (антитела, интерферон и др.);

7) питательная функция (белки являются резервом аминокислот).

Белки плазмы обычно делят на альбумины, глобулины и фибриноген.

Альбумины

Это простые, высокогидро­фильные белки. Образуются в гепа­тоцитах печени. Выполняют следующие функции:

играют важную роль в поддержании коллоидно-ос­мо­ти­чес­кого давления крови);

транспортируют многие вещества, в том числе билирубин, катионы металлов и красок, НЭЖК, холестерин и др.;

служат богатым и быстро реализуемым резервом аминокислот.

Глобулины

разделены электрофорети­чески на подгруппы.  и -гло­булины вырабатываются в ретикулоэндотели­альной системе, в том числе купферовскими клетками печени.

-глобулины состоят из глико- и липопротеидов. - глобулины участвуют в транспорте различных веществ. Они имеют самую высокую электрофоре-тическую подвиж­ность.

-глобулины состоят из глико-, липо- и металлопротеидов. Они выпол­няют транспортную и другие функции.

-глобулины с самой низкой электрофоретической подвижно­стью. К этой группе относятся большинство защитных веществ крови, многие из которых обладают фер­ментативной ак­тив­ностью. -глобулины синтезируются плазматическими клетками.

Белки — ферменты

1. Собственные ферменты плазмы крови, которые участвуют в свертыва­нии крови, растворении внутрисосуди­стых сгустков и т.д. Эти ферменты синтезируются в печени.

2. Клеточные ферменты освобождаются из клеток крови и клеток других тканей в результате есте­ственного рас­пада (лизиса). при гепатите — активность аланина­минотрансферазы, арги­назы, аспартат-сердце

Трансферрин является -глобулином. Может взаимодействовать с Сu 2+ и Zn 2+ , но главным образом связывает и переносит Fe 3+ в различные ткани.

Гаптоглобин является 2-глобулином, выполняет следующие функции:

связывает гемоглобин в соотношении 1:1, в результате образуются высо­комолекулярные комплексы, которые не могут выводиться почками транспортирует витамин В12;

является естественным ингибитором катепсина В.

Церулоплазмин является 2-глобулином, выполняет следующие функции:

— является переносчиком и регулятором концентрации ионов меди в ор­ганизме,

Белки острой фазы

Это группа белков плазмы, содержание которых увеличивается в ответ на повреждение ткани,воспале­ние, опухо­левый процесс. Эти белки синтезиру­ются в печени и являются гликопротеинами. К белкам ост­рой фазы отно­сятся:

гаптоглобин (увеличивается в 2-3 раза, особенно при раке, ожо­гах, хирургических вмеша­тельствах, воспалении);

церулоплазмин (имеет значение как антиоксидант);

трансферрин (содержание снижается);

С-реактивный белок. Отсутствует в сыворотке здорового человека, но обнаруживается при патологи­ческих состояниях, сопровождающихся некро­зом

интерферон — специфический белок, появляющийся в клетках в резуль­тате проникновения в них ви­русов. Он угнетает размножение вирусов в клет­ках.

фибриноген, основная функция которого участие в свертывании крови.

Гиперпротеинемия– увеличение общего содержания белков плазмы.рвата диарея, потеря воды организмом, а следовательно, и плазмой приводит к повышению концентрации белка в крови (относительная гиперпротеинемия). При ряде патологических состояний может наблюдатьсяабсолютная гиперпротеинемия, обусловленная увеличением уровня γ-глобулинов: например, гиперпротеинемия в результате инфекционного или токсического раздражения системы макрофагов;

Гипопротеинемия, или уменьшение общего кол-ва белка в плазме крови, наблюдается гл образом при снижении уровня альбуминов.. Содержание общего белка снижается до 30–40 г/л. Гипопротеинемия наблюдается при поражении печеночных кл (острая атрофия печени, токсический гепатит и др.). Кроме того, гипопротеинемия может возникнуть при резко увеличенной проницаемости стенок капилляров, при белковой недостаточности (поражение пищеварительного тракта, карцинома и др.).

Остаточный азот крови. Гиперазотемия, ее причины. Уремия.

остаточный азот крови (сумма всех азотсодержащих веществ крови после удаления из неё белков = Небелковый азот крови). Нормальное содержание 14,3 – 28,6 ммоль/

1) мочевина (примерно 50% 2) АКты (около 25%), 3) креатин и креатинин(7,5%; 4) полипептиды, нуклеотиды и азотистые основания (5%;

5)мочевая кислота (4%; 6) аммиак и индикан (0,5%; Индикан представляет собой калиевую или натриевую соль индоксилсерной кислоты, образующейся в печени при обезвреживании индола

Ретенционная азотемия развивается в результате недостаточного выделения с мочой азотсодержащих продуктов Она в свою очередь может быть почечной и внепочечной. При почечной ретенционной азотемии концентрация остаточного азота в крови увеличивается вследствие ослабления очистительной функции почек. 90%мочевины вместо 50%Внепочечные в свою очередь подразделяются на надпочечные и подпочечные

Продукционная азотемияразвивается при избыточном поступлении азотсодержащих продуктов в кровь, как следствие усиленного распада тканевых белков при обширных воспалениях, ранениях, ожогах, кахексии и др. Нередко наблюдаются азотемии смешанного типа.

Уреми́я— острое или хроническое самоотравление организма, обусловленное почечной недостаточностью; накопление в крови главным образом токсических продуктов азотистого обмена (азотемия), нарушения кислотно-щелочного и осмотического равновесия.

Проявления: вялость, головная боль, рвота, диарея, кожный зуд, судороги, кома и др.

Основные биохимические функции и особенности печени.

Гепатоцит имеет хорошо развитую систему эндоплазматического ретикулума ЭР как гладкую, так и шероховатую. Функции ЭР — синтез белков, (альбумины), или ферментов работающих в печени. синтезируются фосфолипиды, триглицериды и холестерол

Функции печени: 1. Пищеварительная–Она образует желчь, включающую воду (82%), желчные кислоты (12%), фосфатидилхолин (4%), холестерол (0,7%), прямой билирубин, белки.Желчь обеспечивает эмульгирование и переваривание жиров пищи, стимулирует перистальтику кишечника.

2. Экскреторнаяфункция, близка к пищеварительной – с помощью желчи выводятся билирубин, немного креатинина и мочевины, , холестерол.(в составе желчи)

3. Секреторная– печень синтез альбумина, белков свертывающей системы, липопротеинов, глюкозы, кетоновых тел, креатина.

4. Депонирующая депо гликогена, мин. в-в, особенно железо, витамины A, D, K, B12 и фолиевая кислота.

5.Метаболическая функция – поддержание метаболического гомеостаза

*Углеводный обмен.. Благодаря синтезу и распаду гликогена печень поддерживает конц-ию глюкозы в крови. Гликогена в печени30-100гр.при длительном голодании источником глюкозы яв-ся глюконеогенез из АК и глицерин. превращение гексоз (фруктозы, галактозы) в глюкозу. р-ии ПФ пути обеспечивают синтез НАДФН, необх-го для синтеза ж к-т и холестерола из глюкозы.

*Липидный обмен. Если поступает избыток глюкозы, который не используется для синтеза гликогена и других синтезов, то она превращается в липиды – холестерол и триацилглицеролы. их удаление происходит при помощи ЛПОНП.. При сильном голодании синтезируются кетоновые тела которые яв-ся альтер. ист. Е

*Белковый обмен. За 7 суток обновляются белки печени– альбумины, многие глобулины, ферменты крови, фибриноген и факторы свертывания крови. АК подвергаются реакциям с трансаминированием и дезаминированием, декарбоксилированию с образованием биогенных аминов. идет утилизация избыточного N и включение его в состав мочевины.

*Пигментный обмен. Участие превращении гидрофобного билирубина в гидрофильную форму и секреция его в желчь

6. Обезвреживающая функция — биотрансформации подвергаются: а) стероидные и тиреоидные гормоны, инсулин, адреналин, б) продукты распада гемопротеинов (билирубин), в) продукты жизнед-ти микрофлоры, всасывающихся из толстого кишечника – кадаверин (производное лизина), путресцин (производное аргинина), крезол и фенол (производное фенилаланина и тирозина) и других токсинов, г)ксенобиотики (токсины, лекарственные вещества и их метаболиты).

Взаимосвязь обмена жиров, углеводов и белков.

путем аминирования или переаминирования пировиноградная кислота, являющаяся продуктом распада углеводов, может превратиться в аминокислоту -аланин. Кроме того, пировиноградная кислота в результате дальнейших превращений дает щавелевоуксусную (СООН—СН2—СО—СООН) и a-кетоглютаровую (СООН—СН2—СН2—СО—СООН) кислоты, из которых путем реакции аминирования и переаминирования соответственно образуются аспарагиновая и глютаминовая аминокислоты.

углеводы в животном организме могут синтезироваться из продуктов окисления белков. Углеводы образуются из тех аминокислот, которые при своем дезаминировании превращаются в кетокислоты.

СВЯЗЬ МЕЖДУ ОБМЕНОМ УГЛЕВОДОВ И ЖИРОВ

Единство в обмене углеводов и жиров доказывается возникновением общих промежуточных продуктов распада. При распаде углеводов образуется пировиноградная кислота, а из нее -активная уксусная кислота -ацетил-КоА, который может быть использован в синтезе жирных кислот. Последние при своем распаде дают ацетил-КоА. Для синтеза нейтрального жира необходим кроме жирных кислот и глицерин. Глицерин также может синтезироваться из продуктов распада углеводов, а именно, из фосфоглицеринового альдегида и фосфодиоксиацетона. И наоборот, при распаде глицерина могут образовываться фосфотриозы.

СВЯЗЬ МЕЖДУ ОБМЕНОМ БЕЛКОВ И ЖИРОВ

Многие заменимые аминокислоты могут синтезироваться из промежуточных продуктов расщепления жиров. Возникающий при распаде жирных кислот цетил-КоА вступает в конденсацию с щавелевоуксусной кислотой и через цикл трикарбоновых кислот приводит к образованию a-кетоглютаровой кислоты. Кетоглютаровая кислота в результате аминирования или переаминирования переходит в глютаминовую. Глицерин, входящий в состав нейтральногo жира, окисляется в глицериновую кислоту и в дальнейшем превращается в пировиноградную, а последняя используется для синтеза заменимых аминокислот.

Использование белков для синтеза жира осуществляется через образование ацетил-КоА.

Далее ацетил-КоА может быть использован для синтеза жирных кислот. Глицерин образуется лишь за счет тех аминокислот, которые способны превращаться в пировиноградную кислоту.

Биохимия регуляций. Основные принципы и значение. Иерархия регуляторных систем. Классификация межклеточных регуляторов. Центральная регуляция эндокринной системы: роль либеринов, статинов и тропинов.

Интеграция – это объединение элементов системы в единое целое.

Координация (соподчинение) – это подчинение менее важных элементов системы более важным элементам. Интеграция и координация – это две стороны процесса регуляции.

Внутриклеточную регуляцию (ауторегуляцию).

Дистантную регуляцию (межкеточную

Механизмы клеточной ауторегуляции

1. Компартментализация (мембранный механизм).

Роль мембран состоит в следующем:

а) мембраны делят клетки на отсеки и в каждом из них осуществляются свои процессы;

б) мембраны обеспечивают активный транспорт и регулируют потоки молекул в клетке и из клетки;

в) в мембраны встроены ферменты;

г) мембраны защищают клетку от внешних воздействий.

Воздействием на функции мембран клетка может регулировать тот или иной процесс.

2. Изменение активности ферментов.

3. Изменение количества ферм

Классификация межклеточных регуляторов

а) Гормоны – межклеточные регуляторы, доставляемые к клеткам-мишеням током крови. Вырабатываются в эндокринных железах

б) Нейрогормоны вырабатываются нервными клетками и выделяются в синаптическую щель. Нейрогормоны делятся на медиаторы и модуляторы. Медиаторы обладают непосредственным пусковым эффектом. Модуляторы изменяют эффект медиаторов. Примерами медиаторов являются ацетилхолин и норадреналин; модуляторов – -ааминомасляная кислота, дофамин.

в) Локальные гормоны – это межклеточные регуляторы, действующие на близлежащие к месту их синтеза клетки. Пример: гормоны, производные жирных кислот.

Классификация по широте действия:

а) Гормоны универсального действия действуют на все ткани организма (например, катехоламины, глюкокортикостероиды).

б) Гормоны направленного действия действуют на определенные органы-мишени (например, АКТГ действует на кору надпочечников).

Классификация по химическому строению:

а) Белково-пептидные гормоны

Олигопептиды (кинины, АДГ).

Полипептиды (АКТГ, глюкагон).

Белки (СТГ, ТТГ, ГТГ).

б) Производные аминокислот:

Катехоламины и йодтиронины — образуются из тирозина;

Ацетилхолин — образуется из серина.

Серотонин, триптамин, мелатонин — образуются из триптофана.

в) Липидные гормоны:

стероидные гормоны (гормоны коры надпочечников и половые гормоны);

производные полиненасыщенных жирных кислот (простагландины, тромбоксаны, лейкотриены).

На стимулирующие или тормозящие стимулы из ЦНС секретируются стимулирующие или ингибирующие рилизинг-факторы, которые носят название либерины или статины соответственно. Эти нейрогормоны с кровотоком достигают аденогипофиза, где стимулируют (либерины) или ингибируют (статины) биосинтез и секрецию тропных гормонов.

Тропные гормоны воздействуют на периферические железы, стимулируя выделение соответствующих периферических гормонов

Понятие о рецепторах. Механизм действия гормонов через внутриклеточ­ные рецепторы и рецепторы плазматических мембран и вторые посредники (общая характеристика).

Рецепторы – это белковые молекулы, специфически связывающие данный гормон, в результате чего возникает какой-либо эффект.

Гормон начинает свое действие с соединения с рецептором, образуя гормон-рецепторный комплекс.

Рецепторы могут находиться внутри клетки, а также на клеточной мембране.

Механизм действия гормонов через внутриклеточные рецепторы.

Гормон проникает в клетку, связывается с рецептором. Образованный таким образом гормон-рецепторный комплекс перемещается в ядро и действует на генетический аппарат клетки. В результате меняется процесс транскрипции, а в дальнейшем, синтез белков. Таким образом, данные гормоны влияют на количество ферментов в клетке.

Механизм действия гормонов через рецепторы плазматических мембран

В этом случае гормон не проникает в клетку, а взаимодействует с рецептором на поверхности мембраны.

Первый вариант – с рецептором связан фермент, который из специфического субстрата образует второй посредник. Второй посредник далее связывается со своим рецептором в клетке. Чаще всего рецептором посредника является протеинкиназа, которая за счет фосфата АТФ, фосфорилирует белки. В результате изменяются их свойства, возникает биохимический и физиологический эффект.

Второй вариант – рецептор связан не с ферментом мембраны, а с ионным каналом. При связывании гормона с рецептором, канал открывается, ион поступает в клетку и выполняет функции второго посредника.

Хорошо изученными вторыми посредниками являются циклические нуклеотиды (цАМФ, цГМФ) и Ca 2+ .

Механизм действия гормонов через цАМФ

Когда соответствующий гормон связывается с рецептором, в мембране активируется фермент аденилатциклаза, который из АТФ образует цАМФ. цАМФ является аллостерическим активатором протеинкиназы, которая фосфорилирует белки и изменяет их свойства.

Содержание цАМФ в клетке увеличивают: глюкагон, катехоламины (через -рецепторы), антидиуретический гормон, гистамин (Н2-рецепторы), простагландин-Е, простациклин, тиреотропный гормон, АКТГ, холерный токсин.

Содержание цАМФ в клетке снижают: ацетилхолин (М-холинорецепторы), катехоламины (2-рецепторы), соматостатин, ангиотензин-II, опиаты, коклюшный токсин.

Механизм действия гормонов через Са 2+

Когда гормон связывается с рецептором, в мембране открывается кальциевый канал. В результате содержание кальция в клетке возрастает. Кальций связывается с белком клеток – кальмодулином, образуется комплекс, который может действовать непосредственно на белки, вызывая эффекты, или действовать на кальмодулин-зависимую протеинкиназу. Эта протеинкиназа фосфорилирует белки, в результате изменяются их свойства.

Са 2+ в качестве второго посредника выполняет те же функции, что и цАМФ, за исключением того, что в гладких мышцах вызывает сокращение, тромбоцитах – агрегацию.

Содержание кальция в клетке повышают: катехоламины через 1-рецепторы, ацетилхолин через М-холинорецепторы, гистамин через Н1-рецепторы, тромбоксан, ангиотензин-II.

Инсулин. Строение, образование из проинсулина, метаболизм, регуляция секреции. Влияние на обмен веществ.

Инсулин является белкого-пептидным гормоном с молекулярной массой 5700. Синтезируется в В-клетках поджелудочной железы из проинсулина. проинсулин, который транспортируется в комплекс Гольджи, далее в цистернах которого происходит так называемое созревание инсулина.

В процессе созревания из молекулы проинсулина с помощью специфических эндопептидаз вырезается C-пептид Скорость секреции инсулина зависит от концентрации глюкозы в крови: при повышении концентрации секреция инсулина увеличивается, а при снижении – уменьшается.

Молекула инсулина образована двумя полипептидными цепями, содержащими 51аминокислотный остаток: A-цепь состоит из 21 аминокислотного остатка, B-цепь образована 30 аминокислотными остатками. Полипептидные цепи соединяются двумя дисульфидными мостиками через остатки цистеина, третья дисульфидная связь расположена в A-цепи.

Секрецию инсулина также усиливают: глюкагон, секретин, холецистокинин, СТГ и пища, богатая белками.

Рецепторы для инсулина находятся на клеточной мембране, Главными мишенями для инсулина являются мышцы, печень, жировая ткань, фибробласты и лимфоциты. Головной мозг не зависит от инсулина.

усиление поглощения клетками глюкозы и других веществ;

активацию ключевых ферментов гликолиза;

увеличение интенсивности синтеза гликогена — инсулин форсирует запасание глюкозы клетками печени и мышц путём полимеризации её в гликоген;

уменьшение интенсивности глюконеогенеза — снижается образование в печени глюкозы из различных веществ

усиливает поглощение клетками аминокислот (особенно лейцина и валина);

усиливает транспорт в клетку ионов калия, а также магния и фосфата;

усиливает репликацию ДНК и биосинтез белка;

усиливает синтез жирных кислот и последующую их этерификацию — вжировой ткани и в печени инсулин способствует превращению глюкозы втриглицериды; при недостатке инсулина происходит обратное — мобилизация жиров.

Сахарный диабет. Патогенез. Нарушения обмена веществ при сахарном диабете. Определение толерантности к глюкозе при диагностике сахарного диабета.

Может быть 2 причины сахарного диабета:

Абсолютная недостаточность инсулина. В этом случае концентрация инсулина в крови ниже нормы. Это может быть связано либо с повреждением островковой ткани железы, либо с истощением запасов инсулина, либо с ускоренным его разрушением.

Относительная недостаточность возникает в результате снижения числа рецепторов к инсулину, или снижения их чувствительности.

Различают инсулинзависимый (юношеский, ювенильный) и инсулиннезависимый (стабильный) сахарный диабет.

При инсулинзависимом диабете наблюдается абсолютная недостаточность инсулина, и жизнь больных зависит от инъекции инсулина.

При инсулиннезависимом диабете наблюдается относительная недостаточность инсулина, поддержание глюкозы на нормальном уровне достигается сахаропонижающими средствами, инъекции инсулина не требуются.

Для продолжения скачивания необходимо собрать картинку:

Источник: http://studfiles.net/preview//page:7/

Строение белков плазмы крови

По строению белки плазмы крови являются глобулярными, по составу они делятся на простые (альбумины) и сложные.

Среди сложных, можно выделить липопротеины (ЛПОНП, ЛППП, ЛПНП, ЛПВП, ХМ), гликопротеины (почти все белки плазмы) и металлопротеины (трансферин, церрулоплазмин).

Общее количество белка в плазме крови в норме составляет 70-90 (60-80) г/л, его определяют с помощью биуретовой реакции. Количество общего белка в крови имеет диагностическое значение.

Повышение общего количества белка в плазме крови называется гиперпротеинемия, снижение – гипопротеинемия. Гиперпротеинемия возникает при дегидратации (относительная), травмах, ожогах, миеломной болезни (абсолютная). Гипопротеинемия наступает при спаде отеков (относительная), голодании, патологии печени, почек, кровопотере (абсолютная).

Кроме общего содержания белков в плазме крови также определяют содержание отдельных групп белков или даже индивидуальных белков. Для этого их разделяют с помощью электроэлектрофореза.

Электрофорез – это метод, при котором вещества с различным зарядом и массой, разделяются в постоянном электрическом поле. Электрофорез проводят на различных носителях, при этом получают разное количество фракций. При электрофорезе на бумаге белки плазмы крови дают 5 фракций: альбумины, α1-глобулины, α2-глобулины, β-глобулины и γ-глобулины. При электрофорезе на агаровом геле получается 7-8 фракций, на крахмальном геле – 16-17 фракций. Больше всего фракций – более 30, дает иммуноэлектрофорез.

Белки плазмы можно также разделить с помощью высаливания нейтральными солями щелочных и щелочноземельных металлов (3 фракции: альбумины, глобулины и фибриноген) или осаждения в спиртовом растворе.

Денситограмма белков сыворотки крови Электрофореграмма белков сыворотки крови (10 пациентов)
 

Целесообразность разделения белков на фракции связана с тем, что белковые фракции плазмы крови отличаются между собой преобладанием в них белков, с определенными функциями, местом синтеза или разрушения.

Нарушение соотношения белковых фракций плазмы крови называется диспротеинемия. Выявление диспротеинемии имеет диагностическое значение.

Фракции белков плазмы крови

I. Альбумины

Основным белком этой фракции является альбумин.

Альбумин. Простой белок из 585 АК с массой 69кДа, имеет 17 дисульфидных мостиков, много дикарбоновых АК, обладает высокой гидрофобностью. У альбумина наблюдается полиморфизм. Синтезируется в печени (12 г/сут), утилизируется почками, энтероцитами и др. тканями. Т½=20 дней. 60% альбуминов находиться в межклеточном веществе, 40% - в кровяном русле. В плазме альбуминов 40-50г/л, они составляют 60% всех белков плазмы крови. Функции: поддержание онкотического давления (вклад 80%), транспорт свободных жирных кислот, билирубина, жёлчных кислот, стероидных и тиреоидных гормонов, ХС, лекарств, неорганических ионов (Cu2+, Ca2+, Zn2+), является источником аминокислот.

Транстиретин (преальбумин). Тетрамер. В плазме 0,25г/л. Белок острой фазы (5 группа). Транспортирует тиреоидные гормоны и ретинолсвязывающий белок. Снижается при голодании.

Диспротеинемия альбуминовой фракции реализуется преимущественно за счет гипоальбуминемии.

Причиной гипоальбуминемии является снижение синтеза альбуминов при печеночной недостаточности (цирроз), при повышении проницаемости капилляров, при активации катаболизма вследствие ожогов, сепсисе, опухолях, при потере альбуминов с мочой (нефротический синдром), при голодании.

Гипоальбуминемия вызывает отек тканей, снижение почечного кровотока, активацию РААС, задержку воды в организме и усиление отека тканей. Резкий отток жидкости в ткани приводит к снижению АД и может вызвать шок.

Глобулины.Онисодержат липопротеины и гликопротеины.

II. α1-Глобулины

α1-Антитрипсин - гликопротеин, синтезируемый печенью. В плазме 2,5г/л. Белок острой фазы (2 группа). Важный ингибитор протеаз, в том числе эластаз нейтрофилов, которые разрушают эластин альвеол лёгких и печени. α1-Антитрипсин также ингибирует коллагеназу кожи, химотрипсин, протеазы грибков и лейкоцитов. При дефиците α1-антитрипсина могут возникнуть эмфизема лёгких и гепатит, приводящий к циррозу печени.

Кислый α1- гликопротеин, синтезируется печенью. В плазме 1 г/л. Белок острой фазы (2 группа). Транспортирует прогестерон и сопутствующие гормоны.

ЛПВП синтезируются в печени. В плазме 0,35 г/л. Транспортируют излишки ХС из тканей в печень, обеспечивают обмен других ЛП.

Протромбин - гликопротеид, содержащий около 12% углеводов; белковая часть молекулы представлена одной полипептидной цепью; молекулярная масса около 70000Да. В плазме 0,1 г/л. Протромбин - предшественник фермента тромбина, стимулирующего формирование тромба. Биосинтез протекает в печени и регулируется витамином К, образуемым кишечной флорой. При его недостатке витамина К уровень протромбина в крови падает, что может приводить к кровоточивости (ранняя детская геморрагия, обтурационная желтуха, некоторые болезни печени).

Транскортин - гликопротеин, синтезируемый в печени, масса 55700Да, Т½=5 суток. Переносит кортизол, кортикостерон, прогестерон, 17-альфа-гидроксипрогестерон и, в меньшей степени, тестостерон. В плазме 0,03 г/л. Концентрация в крови чувствительна к экзогенным эстрогенам и зависит от их дозы.

Тироксинсвязывающий глобулин (TBG) -синтезируется в печени. Молекулярная масса 57 кДа. В плазме 0,02 г/л. Т½=5 суток. Он является главным транспортером тироидных гормонов в крови (транспортирует 75% тироксина и 85% трийодтиронина).

Диспротеинемия за счет α1-глобулиной фракции реализуется преимущественно за счет: 1). снижения синтеза α1-антитрипсина. 2). Потере белков этой фракции с мочой при нефротическом синдроме. 3). повышения белков острой фазы в период воспаления.

III. α2-Глобулины

α2-Макроглобулин очень крупный белок (725 кДа), синтезируется в печени. Белок острой фазы (4 группа). В плазме 2,6 г/л. Главный ингибитор множество классов протеиназ плазмы, регулирует свертывание крови, фибринолиз, кининогенез, иммунные реакции. Уровень α2-макроглобулина в плазме уменьшается в острой фазе панкреатита и карциномы простаты, увеличивается - в результате гормонального эффекта (эстрогены).

Гаптоглобин – гликопротеид, синтезируется в печени. В плазме 1 г/л. Белок острой фазы (2 группа). Связывает гемоглобин с образованием комплекса, обладающего пероксидазной активностью, препятствует потери железа из организма. Гаптоглобин эффективно ингибирует катепсины С, В и L, может участвовать в утилизации некоторых патогенных бактерий.

Витамин Д связывающий белок (БСВ) (масса 70кДа). В плазме 0,4 г/л. Обеспечивает транспорта витамина А в плазме и предотвращает его экскрецию с мочой.

Церулоплазмин - главный медьсодержащий белок плазмы (содержит 95% меди в плазмы) с массой 150кДа, синтезируется в печени. В плазме 0,35 г/л. Т½=6 суток. Церулоплазмин обладает выраженной оксидазной активностью; ограничивает освобождение железа, активирует окисление аскорбиновой кислоты, норадреналина, серотонина и сульфгидрильных соединений, инактивирует активные формы кислорода, предотвращая ПОЛ.

Церулоплазмин - белок острой фазы (3 группа). Он повышается у больных с инфекционными заболеваниями, циррозом печени, гепатитами, инфарктом миокарда, системными заболеваниями, лимфогранулематозом, при злокачественных новообразованиях различной локализации (рак легкого, молочной железы, шейки матки, желудочно-кишечного тракта).

Болезнь Вильсона – Коновалова. Недостаточность церулоплазмина возникает при нарушении его синтеза в печени. При дефиците церулоплазмина Cu2+ уходит из крови, выводятся с мочой или накапливается в тканях (например, в ЦНС, роговице).

Антитромбин III. В плазме 0,3 г/л. Ингибитор плазменных протеаз.

Ретинолсвязывающий белок синтезируется в печени. В плазме 0,04 г/л. Связывает ретинол, обеспечивает его транспорт и предотвращает распад. Функционирует в комплексе с транстиретином. Ретинол связывающий белок фиксирует излишки витамина А, что предотвращает мембранолитическое действие высоких доз витамина.

Диспротеинемия за счет α2-глобулиной фракции может возникать при воспалении, т.к. в этой фракции содержатся белки острой фазы.

IV. β-Глобулины

ЛПОНП - образуются в печени. Транспорт ТГ, ХС.

ЛППП - образуются в крови из ЛПОНП. Транспорт ТГ, ХС.

ЛПНП – образуются в крови из ЛППП. В плазме 3,5 г/л. Транспортируют излишки ХС из периферических органов в печень.

Трансферрин – гликопротеин, синтезируется печенью. В плазме 3 г/л. Т½=8 суток. Главный транспортер железа в плазме, 1 молекула трансферрина связывает 2 Fe3+, а 1г трансферрина соответственно около 1,25 мг железа. При снижении концентрации железа синтез трансферрина возрастает. Белок острой фазы (5 группа). Снижается при печеночной недостаточности.

Фибриноген гликопротеин, синтезируется в печени. Молекулярная масса 340кДа. В плазме 3 г/л. Т½=100часов. Фактор I свёртывания крови, способен под действием тромбина превращаться в фибрин. Является источником фибринопептидов, обладающих противовоспалительной активностью. Белок острой фазы (2 группа). Содержание фибриногена увеличивается при воспалительных процессах и некрозе тканей. Снижается при ДВС синдроме, печеночной недостаточности. Фибриноген основной белок плазмы, влияющий на величину СОЭ (с повышением концентрации фибриногена скорость оседания эритроцитов увеличивается).

С-реактивный белок синтезируется преимущественно в гепатоцитах, его синтез инициируется антигенами, иммунными комплексами, бактериями, грибами, при травме (через 4-6 ч после повреждения). Может синтезироваться эндотелиоцитами артерий. В плазме


Смотрите также