Какая ткань вырабатывает антитела


АНТИТЕЛА, Т- и В-ЛИМФОЦИТЫ

— Что это за плазматические клетки, вырабатывающие антитела? О них уже знали во времена Мечникова или это более позднее открытие?

Антитела

— Конечно, более позднее. Это достижения новой иммунологии. Шведская исследовательница Астрид Фагреус в 1948 году предположила, что антитела вырабатываются плазматическими клетками. Окончательно это было доказано известным американским иммунологом Альбертом Кунсом всего 20 лет назад, в 1956 году.

— Можно ли плазматическую клетку считать самой главной клеткой иммунной системы, коль скоро она вырабатывает главное специфическое оружие?

— Нет, нельзя. Главные клетки распознаны еще позже.

— Что же это за клетки?

— Это лимфоциты.

Если не учитывать эритроциты, которые переносят кислород, то все остальные клетки крови имеют белый цвет. Их называют лейкоцитами, то есть белыми клетка ми. Из всех белых клеток 30 процентов относятся к лимфоцитам. Лимфоцит в переводе на русский язык означает «клетка лимфы».

Во всех тканях нашего тела, помимо крови, циркулирует лимфа. По лимфатическим сосудам она поступает в лимфатические узлы, а оттуда собирается в один большой сосуд — грудной проток, который впадает в кровяное русло около самого сердца. В лимфе нет эритроцитов. Только лимфоциты.

Ровно триста лет назад, знаменитый голландец Анто-ни Левенгук создал свой «микроскоп». Первыми объектами его наблюдений были капля дождевой воды и капля крови. Он открыл красные кровяные шарики — эритроциты, которые составляют основную массу клеток крови. Не прошло и сотни лет после этого, как были обнаружены белые клетки крови. Их почти в тысячу раз меньше, чем эритроцитов, но все равно очень много. В грамме крови содержится 4—5 миллиардов эритроцитов и 6—8 миллионов лейкоцитов.

Лейкоциты делятся на две главные группы. Клетки первой группы составляют около 2/з и характеризуются тем, что имеют не круглые, а сегментированные ядра. У клеток второй группы абсолютно круглые ядра, которые занимают большую часть клетки. Первые являются собственно лейкоцитами, а вторые получили название лимфоцитов.

В конце прошлого столетия Мечников обнаружил, что лейкоциты защищают организм, пожирая чужеродные частицы. В отличие от больших тканевых фагоцитов — макрофагов, он назвал их малыми фагоцитами — микрофагами. А вот чем занимаются лимфоциты, стало известно всего 15 лет назад.

Как легко мы перелистываем историю! Триста лет назад открыты первые клетки крови — красные, двести лет назад - лейкоциты, сто лет назад - лимфоциты. Упорный труд, поиски, изобретательность, споры, десять поколений исследователей! А у нас полстраницы печатного текста.

Осмотр

Два миллиона лимфоцитов в каждом грамме крови. Чем они заняты? Этот вопрос задавали себе сотни исследователей. Профессор Джеймс Гоуэнс из Оксфорда, сделавший больше всех других, чтобы обнаружить функции этих клеток, приводит слова известного патолога Арнольда Рича: «Лимфоциты — это флегматичные наблюдатели бурной активности фагоцитов». Таким было одно из распространенных воззрений. Действительно, очень маленькие клетки, 6—8 микрон в диаметре, чуть больше собственного ядра (почти одно ядро!), которые не обладают активной подвижностью, но почти всегда скапливаются вокруг воспалительного очага, в котором работают фагоциты, пожирая все инородное или отмирающее.

Было и другое мнение. Лимфоцитам приписывали функцию питания других клеток. Их даже называли трофоцитами — питающими клетками.

Многие считали, что из лимфоцитов возникают всевозможные другие клетки — соединительноткакые, печеночные, легочные и т. д. «Старая литература, — пишет Гоуэнс, — наполнена противоречивыми доказательствами того, что малые лимфоциты могут превращаться в эритроциты, гранулоциты, моноциты, фибробласты, плазматические клетки и т. д. Один циник как-то заметил, что все клетки, за исключением клеток нервной системы, в то или иное время рассматривались как производные лимфоцитов!»

Лимфоцит действительно таинственная клетка, коль скоро ему удалось сохранить свою тайну перед прозорливостью науки вплоть до 60-х годов XX столетия! В начале 69-х годов появились бесспорные доказательства того, что все специфические реакции иммунитета — выработку антител, отторжение пересаженных тканей или органов, противовирусную защиту — осуществляют лимфоциты.

Разберем это на примере исследований Джеймса Гоуэнса. В те годы у него в Оксфордском университете была малюсенькая лаборатория. В одной из комнаток со старинными полупрозрачными окнами стоял в центре на столе сконструированный им самим станок. Главная часть станка — цилиндр из плексигласа. В цилиндре хитроумно закреплена крыса. На шее у крысы разрез. Через разрез внутрь тела уходит тоненькая прозрачная трубочка. Из трубочки все время капают маленькие белые капли.

Доктор Гоуэнс ввел трубку в главный лимфатический сосуд — в грудной проток — и выкачивает лимфу. Он оставляет крысу без лимфоцитов. После этого он иммунизирует ее чужеродными клетками — эритроцитами барана. Должны выработаться антитела против бараньих эритроцитов. Он исследует кровь крысы раз, другой, третий... Антител нет! Тогда он берет другую безлимфоцитную крысу и возвращает ей в кровь ее лимфоциты. Иммунизирует и обнаруживает нормальное количество антител.

Значит, без лимфоцитов антитела вырабатываться не могут.

Второе исследование. Гоуэнс облучает крысу рентгеновскими лучами. Многие системы страдают после облучения, иммунная система тоже. Животное не вырабатывает антител. Облученной крысе введены эритроциты барана, антител нет. Другой облученной крысе эритроциты барана введены вместе с лимфоцитами от здоровой крысы, антитела есть.

Значит, с лимфоцитами можно передать в другой организм способность вырабатывать антитела. С лимфоцитами переносится и память об антигене. Если эти клетки взять от животного, которого уже иммунизировали эритроцитами барана раньше, то в облученном животном они обеспечат выработку большего количества антител. Так, как если бы мы его иммунизировали повторно.

Третье исследование касается механизма отторжения пересаженных чужеродных тканей. К началу 60-х годов было хорошо известно, что первая пересадка кожи иммунизирует организм и повторный лоскут отторгается вдвое быстрее первого. Но почему? Думали, что это работа антител. Однако сыворотка крови от такого животного, содержащая антитела, если ее ввести другому животному, не ускоряет отторжения пересаженной кожи. А вот лимфоциты ускоряют. Причем точно в два раза.

Значит, это лимфоциты занимаются отторжением пересаженных чужеродных тканей! Без помощи антител. Сами, своими «руками». Такие лимфоциты, которые после первого контакта с чужеродным антигеном специально нацелены против него, стали называть сенсибилизированными лимфоцитами. Они да антитела — вот два главных типа оружия иммунитета.

Как и где вырабатываются антитела?

Антитела присутствуют в каждом организме как иммунный ответ на различные воздействия. Они вырабатываются лимфоцитами в случае необходимости, и по их количеству и классу можно судить о наличии того или иного заболевания.

Однако антитела важны не только в диагностических целях, они отвечают за работу иммунитета. Именно эта их функция используется во время вакцинации. С течением жизни человек накапливает в крови те или иные антитела, что и составляет его иммунитет. Для стимуляции выработки определенного вида антител используются вакцины.

Антитела: что это такое, группы и их действие

Антитела – специфические белки в крови, которые связывают антигены

Антитела представляют собой белковые соединения, которые являются частью иммунной системы человека. Для самого организма это своего рода защита, а в лабораторном исследовании – маркеры определенных заболеваний. Первые антитела вырабатываются еще в утробе. Они передаются ребенку от матери, но их немного. После рождения ребенок постоянно сталкивается с враждебной средой, вырабатывая все новые антитела. Этот процесс может продолжаться в течение всей жизни.

Действие антител основывается на связывании цепочки «антиген-антитело». Антиген того или иного возбудителя заболевания попадает в кровь, провоцируя выработку антител определенного класса. Для выработки определенных антител в течение жизни человеку делают различные прививки. Суть вакцинации заключается во введении определенного количества антигена, который провоцирует выработку тех или иных антител в количестве, достаточном для формирования иммунитета. Они остаются в организме человека в течение всей жизни, защищая его от заражения.

Выделяют 5 классов антител.

Выработка антител того или иного класса зависит не только от самого заболевания, но и его этапа: одни антитела вырабатываются сразу же после заражения, другие – только после окончания инкубационного периода:

  1. Класс G. Этот класс указывает на выработку стойкого иммунитета к возбудителю. Антитела класса G начинают вырабатываться через 2-3 недели после начала заболевания и могут сохраняться в организме всю жизнь, не указывая при этом на наличие самого возбудителя.
  2. Класс Е. Антитела, которые вырабатываются при аллергических реакциях атопического типа (обычно кожные реакции, отеки, зуд, аллергический ринит), а также при паразитарных поражениях.
  3. Класс А. Этот класс иммуноглобулинов вырабатывается в случае возникновения различных респираторных инфекций и при поражениях печени различной этиологии (вирусные гепатиты, цирроз, алкоголизм). Они появляются в крови через 1-2 недели после возникновения инфекции и исчезают примерно через 2-3 месяца. Есть уровень IgA остается прежним, это говорит о хронической форме заболевания.
  4. Класс М. Антитела, которые вырабатываются самыми первыми при инфекциях и снижаются в течение месяца после начала заболевания.
  5. Класс D. Этот класс иммуноглобулинов еще мало изучен и пока не используется в диагностических целях.

Где и как вырабатываются антитела? О чем они говорят?

Антитела вырабатываются лимфоцитами!

Антитела вырабатываются иммунными клетками под названием В-лимфоциты. Антитела содержатся в мембране этих клеток и в самой сыворотке крови. В случае возникновения инфекции антитела начинают поступать в кровь, познавая те или иные антигены и подавая сигнал иммунной системе.

Иммунологический анализ определяет не только класс антител, но и их количество. Это позволяет выявить определенные заболевания и даже примерный срок заражения:

  • Вирусные и бактериальные инфекции. С помощью антител можно определить наличие той или иной инфекции, причем инфекция может быть совершенно различной: туберкулез, пневмония, герпес, ВИЧ и т.д. К определенному антигену вырабатывается свой иммуноглобулин, который и провоцирует иммунный ответ.
  • Аллергии. Для определения аллергии существуют кожные пробы и иные тесты, но анализ на иммуноглобулины позволяет выявить вероятность появления аллергических реакций еще до того, как они проявятся. Этот анализ используют для обследования людей, с наследственной предрасположенностью к аллергии, чтобы узнать вероятность ее возникновения.
  • Паразитарные инфекции. Анализ кала на гельминты не всегда эффективен, так как яйца глистов не всегда обнаруживаются в кале. Анализ крови в этом случае куда более информативен. Он показывает повышенное количество иммуноглобулина Е в плазме крови, что говорит о том, что паразитарная инфекция в организме присутствует.
  • Половые инфекции. С помощью антител можно определить также различные половые инфекции: микоплазму, токсоплазму, уреаплазму, сифилис и другие. Именно ИФА (иммуноферментный анализ) является наиболее информативным в плане диагностирования всех существующих ЗППП.
  • Заболевания щитовидной железы. Для определения заболеваний щитовидной железы определяют количество антител к тиреоглобулину, специфическому белку, вырабатываемому щитовидной железой.
  • Аутоиммунные заболевания. Антитела являются показателем большинства аутоиммунных заболеваний. Они называются аутоантителами, то есть это те иммуноглобулины, которые выбрасываются в кровь в ответ не на внешний раздражитель, а на собственные клетки организма. Антигенами в этом случае могут выступать какие-либо соединения, липиды, гормоны и т.д.

Анализ крови на антитела, его расшифровка

Анализ крови на антитела назначается с целью выяснения состояния иммунитета человека

Анализ крови на антитела сдается из вены. Эта процедура стандартная, проводится быстро и безболезненно. Небольшая подготовка к сдаче анализа требуется. Например, накануне не рекомендуется употреблять жирную и жареную, острую пищу, алкоголь, так как это может повлиять не только на состав крови, но и свертываемость. Если кровь быстро свернется или сыворотка окажется мутной, обследование провести будет невозможно.

Перед сдачей анализа нужно отменить все препараты, но с разрешения врача. Если прием некоторых препаратов обязателен, это учитывается при расшифровке анализа.

Некоторые антитела чувствительны к эмоциональным и физическим напряжениям, поэтому перед сдачей крови желательно избегать стрессов и занятий спортом. Утреннюю зарядку также делать нежелательно, а перед входом в лабораторию нужно немного посидеть и отдышаться.

Расшифровкой должен заниматься врач, так как наличие некоторых антител трактуется по-разному, может потребоваться дополнительное обследование.

Основные показатели:

  • IgA. В норме он присутствует в крови в небольших количествах, не более 3,5 г/л. Если количество этого иммуноглобулина значительно повышается, можно говорить о наличии инфекции. Среди возможных заболеваний: туберкулез, гепатит, цирроз, заболевания ЖКТ, инфекции дыхательных путей. Чтобы уточнить диагноз, собирают анамнез и проводят другие тесты. Пониженное количество IgA встречается при приеме некоторых препаратов, подавляющих иммунитет, при раке крови, облучении.
  • IgE. Уровень этого иммуноглобулина нестабилен. Она может повышаться при аллергии или глистных инвазиях, а может оставаться на прежнем уровне, что не отрицает возможность аллергии и паразитарной инфекции.
  • IgM. Эти иммуноглобулины вырабатываются в больших количествах при заболеваниях ЖКТ, инфекциях, дыхательных путей, поражениях печени, паразитарных инфекциях, а во время беременности указывают на возможность внутриутробного инфицирования.
  • IgG. У взрослого человека эти антитела присутствует в сыворотке крови в количестве 7-18 г/л. Это показатель наличия иммунитета к тому или иному заболеванию, но повышение уровня этих иммуноглобулинов может указывать и на такие заболевания, как туберкулез, аутоиммунные заболевания, ВИЧ. Снижение уровня IgG встречается при онкологии, аллергических реакциях.

Антигены и антитела

Антигены — это вещества, чужеродные для организма, вызывающие образование антител

Организм начинает вырабатывать антитела на любой антиген, который сочтет враждебным. В зависимости от самого антигена отличаются и иммуноглобулины, атакующие его.

Не все антитела способны атаковать антиген, некоторые служат исключительно для распознавания враждебных клеток и активизации иммунной реакции. Антитело вступает в реакцию с антигеном, что провоцирует выброс определенных веществ, выполняющих защитную функцию в организме.

Если говорить о цепочке «антиген-антитело», то существует другая классификация антител:

  1. Антитела к белкам щитовидной железы. В крови обнаруживают антитела к рецепторам ТТГ и различным белкам, вырабатываемым щитовидной железой. Как правило, это указывает на тиреотоксикоз – синдром, связанный с гиперфункцией щитовидной железы, когда выработка гормонов идет слишком активно.
  2. Антиспермальные антитела. Это явление носит также название «иммунологическое бесплодие». Оно может быть выявлено как у мужчин, так и у женщин. Иммунитет распознает сперматозоиды как враждебные клетки и атакует их, что исключает зачатие.
  3. Антитела к ядерным антигенам. Это специфические антитела, которые атакуют собственные клетки организма, распознавая их как антигены, что является причиной неизлечимых аутоиммунных заболеваний.
  4. Антитела к инсулину. Это разновидность аутоантител, которые связываются с инсулином, вызывая реакцию организма на него, что встречается при врожденном сахарном диабете.
  5. Антитела к резус-фактору. Часто этот анализ проводится во время беременности у женщин с отрицательным резус-фактором. Если количество антител в крови велико, значит организм матери воспринимает клетки ребенка как враждебные и борется с ними.
  6. Антитела к двухспиральной ДНК. Встречаются при системной красной волчанке. Это антитела, которые направлены против собственной цепочки ДНК, что приводит к разрушению организма.

Больше информации о том, что такое антитела и антигены можно узнать из видео:

Читайте:  Спермограмма: правильная подготовка к анализу

Это не весь список специфических антител. Анализ крови на антитела позволяет определить большое количество заболеваний с высокой точностью. Он играет большое значение в лабораторной диагностике.

Вопр 83. Механизм выработки антител.

Чтобы вырабатывать антитела к одному антигену, требуется относительно небольшое число В-лимфоцитов; они образуют клон – превращаются в плазматические клетки, которых особенно много в лимфатических узлах и селезенке. Плазматические клетки, образовавшиеся из определенного клона В-лимфоцитов, вырабатывают антитела к одному антигену. Эти клетки в выработке антител к другим антигенам участия не принимают. Поскольку численность В-лимфоцитов огромна (2–4 миллиарда в одном литре крови) и они постоянно образуются вновь, наш организм может одновременно вырабатывать антитела к практически любому числу антигенов.

Активация, пролиферация и дифференцировка В-лимфоцитов. Антиген- зависимая дифференцировка включает активацию, пролиферацию и дифференцировку В- клеток в плазматические клетки и В- клетки памяти. Активация осуществляется различными путями, что зависит от свойств антигенов и участия других клеток ( макрофагов, Т- хелперов). Активация В-клеток состоит из двух различных фаз: пролиферации и дифференцировки. Известны 2 различных механизма, активирующие пролиферацию и последующую дифференцировку покоящихся В-клеток. Один механизм, называемый факторзависимой активацией функционирует лишь в клетках Lyb 5+. В этом случае активирующий агент вызывает агрегацию рецепторов покоящейся В-клетки, индуцируя таким путем ее активацию и переход в фазу Gj. На такую стимулированную клетку действуют растворимые факторы, в том числе факторы роста В-клеток и интерлейкин 1 (IL-1), и она вступает в фазу S. В этом состоянии клетка становится объектом действия факторов дифференцировки, часто называемых факторами, замещающими Т-клетки (ЗФ); под их влиянием начинаются синтез и секреция иммуноглобулина. Второй основной механизм активации покоящихся В-клеток включает в себя их взаимодействие с хелперными Т-клетками. Последние распознают находящиеся на поверхности В-клеток антиген и молекулу класса II, что способствует стимуляции В-клетки. Такая активация, часто называемая «когнатной», обнаружена в случае В-клеток Lyb 5-. Дальнейшее развитие стимулированных В-клеток может зависеть от их последующего взаимодействия с хелперными Т-лимфоцитами или с растворимыми факторами. Вероятно, для их дифференцировки в клетки, секретирующие иммуноглобулин, необходимы факторы дифференцировки. В результате пролиферации увеличивается число клеток, способных реагировать с введенным в организм чужеродным антигеном. Значение пролиферации велико, поскольку в неиммунизированном организме очень мало В-клеток, специфичных для любого из отдельных антигенов. Пролиферация имеет два последствия: 1) увеличение числа клеток, способных немедленно дифференцироваться в антителообразующие клетки; 2) накопление В-клеток, во многом похожих на исходные клетки-предшественники. Это обеспечивает при повторной иммунизации иммунологический ответ большей силы, чем при первичном ответе. Иначе говоря, увеличение числа предшественников ведет к появлению иммунологической памяти. Пролиферативная фаза В-клеточного ответа находится под управлением продукта Т-клеток, называемого фактором роста (ФР) В-клеток

Плазматические клетки. (плазмоциты) – это класс лейкоцитов, которые образуются из В-лимфоцитов. Плазматические клетки являются частью иммунной системы, основная функция которых состоит в выработке специфических иммуноглобулинов (антител). Плазматические клетки имеют овальную или округлую форму, диаметр в среднем 15-20 мкм. На световом микроскопе хорошо различимо ядро с глыбками гетерохроматина и крупным ядрышком, окруженное участком светлой цитоплазмы, где находится активный и хорошо развитый в связи с функцией клетки аппарат Гольджи. Остальная часть цитоплазмы плотная, заполнена цистернами гЭПР. В-лимфоцит получает сигнал о том, или ином антигене и после этого оседает в лимфатических узлах, где начинает преобразовываться в плазматическую клетку (плазмоцит). Одновременно начинают образовываться клетки памяти, которые способны реагировать на присутствие антигена спустя месяцы и даже годы после первого вторжения. Продолжительность жизни плазматических клеток составляет всего несколько дней, в то время как клетки памяти живут намного больше, и иногда могут сохраняться до конца жизни человека. Если произойдет повторное вторжение того же самого антигена, то клетки памяти сразу вступят в бой и незамедлительно синтезируют антитела в огромном количестве, при этом им не надо будет тратить драгоценное время на распознавание антигена. Плазматические клетки находятся в красном костном мозге, в селезёнке, в лимфоузлах. В норме в крови у взрослых плазмоциты отсутствуют, а у детей допускается содержание единичных плазматических клеток. Плазматические клетки, как правило, появляются в периферической крови во время вирусных инфекций (ветряная оспа, корь, краснуха, инфекционный мононуклеоз).

Иммунологическая память. - при повторной встрече с антигеном организм формирует более активную и быструю иммунную реакцию — вторичный иммунный ответ. Иммунологическая память имеет высокую специфичность к конкретному антигену, распространяется как на гуморальное, так и клеточное звено иммунитета и обусловлена В- и Т-лимфоцитами. Она образуется практически всегда и сохраняется годами и даже десятилетиями. Благодаря ей наш организм надежно защищен от повторных антигенных интервенций. На сегодняшний день существует две наиболее вероятные теории формирования иммунологической памяти. Одна из них считает, что иммунологическая память обусловлена длительно сохраняющимся в организме антигеном, и этому имеется множество примеров. Так, инкапсулированный возбудитель туберкулеза, персистирующие вирусы кори, полиомиелита, ветряной оспы и некоторые другие длительное время (иногда всю жизнь) сохраняются в организме и таким образом могут оказывать антигенное воздействие на иммунную систему. По другой теории, на наш взгляд более приемлемой, в процессе развития первичной иммунной реакции в организме часть лимфоцитов размножается без дифференцировки и превращается в малые покоящиеся клетки (В - и Г-клетки иммунологической памяти).Эти клетки отличаются высокой специфичностью к конкретной антигенной детерминанте и большой продолжительностью жизни (до 10 лет и более), что обеспечивает постоянную готовность иммунной системы реагировать на повторный контакт с антигеном по вторичному типу. Феномен иммунологической памяти широко используется в практике вакцинации людей для создания напряженного иммунитета и поддержания его длительное время на защитном уровне.

Механизм вторичного иммунного ответа. Первичный иммунный ответ реализуется при первом контакте с незнакомым антигеном, а вторичный – при повторном. Вторичный иммунный ответ является более совершенным, так как осуществляется на качественно более высоком уровне из-за наличия преформированных иммунных факторов, отражающих генетическую адаптацию к патогену (уже имеются готовые гены специфических иммуноглобулинов и антиген-распознающих рецепторов Т-клеток). Действительно, здоровые люди не болеют дважды многими инфекционными заболеваниями, так как при повторном заражении реализуется вторичный иммунный ответ, при котором отсутствует длительная воспалительная фаза, а в работу сразу же вступают иммунные факторы – специфические лимфоциты и антитела. Вторичный иммунный ответ характеризуется следующими признаками: 1. Более ранним развитием, иногда – даже молниеносным. 2. Меньшей дозой антигена, необходимой для достижения оптимального иммунного ответа. 3. Увеличением силы и продолжительности иммунного ответа за счёт более интенсивной продукции цитокинов. 4. Усилением клеточных иммунных реакций за счёт более интенсивного образования специфических Т-хелперов 1 типа и цитотоксических Т-лимфоцитов. 5. Усилением образования антител за счёт формирования большего количества Т-хелперов 2 типа и плазматических клеток.6. Повышением специфичности распознавания иммуногенных пептидов Т-лимфоцитами за счёт увеличения аффинности их антиген-специфических рецепторов.7. Повышением специфичности синтезируемых антител за счёт изначальной продукции IgG высокой авидности. При первичном и вторичном иммунном ответе динамика антителообразования имеет различный хар-р и протекает в несколько стадий: 1) латентная – происходит переработка и представление а/г иммунокомпитентным клеткам, происходит размножение клона клеток, специализированных на выработку а/т к данному а/г – начинается синтез а/т. В крови не обнаруживаются. 2) логарифмическая – синтезированные а/т высвобождаются из плазмоцитов и поступают в лимфу и кровь. 3) стационарная – кол-во а/т достигает max и стабилизируется. 4) фаза снижения уровня а/т. При вторичном иммунном ответе латентная фаза укорочена до нескольких часов или 1-2 дн. Логарифмич фаза хар-ся быстрым нарастанием и более высоким уровнем а/т, кот в стационарной фазе длительно удерживается и медленно снижается.

Приобретенный иммунитет, вакцинация. Клетки приобретенного иммунитета (или адаптивного) способны не только распознать, но и запомнить микробы и токсины. Из-за этого, прежде чем начать атаку они анализируют встречался ли враг раньше, просчитывают какие антитела против него синтезировать - поэтому ответная реакция приобретенного иммунитета будет гораздо позднее, чем врожденного. Зато более эффективна и при повторной встрече (запомнив микроба) соответствующие антитела начнут вырабатываться практически сразу. Основные клетки приобретенного иммунитета - лимфоциты, в основном Т и В-лимфоциты. Т-лимфоциты (Т-клетки) различны и выполняют несколько задач. Одни сообщают о начале атаки и необходимости производства антител, другие помогают фагоцитам находить и разрушать микробы, третьи (клетки - киллеры) способны вычислять клетки организма, инфицированные вирусом и уничтожать их. В-лимфоциты также различны, одни превращаются в В-клетки памяти, другие синтезируют антитела, причем каждый лимфоцит синтезирует только один вид антител, которые располагаются на его поверхности в качестве рецепторов. Антитела - это молекулы белка, которые способны реагировать с определенным антигеном. Различные антитела выполняют разные функции - уничтожают или мешают жизнедеятельности микроба, обезвреживают токсины, сообщают, что им известен возбудитель инфекции, действуют против антигенов других биологических видов. Приобретенный иммунитет бывает пассивный и активный. Пассивный - передача готовых антител от матери к плоду через плаценту или с грудным молоком. Активный - появляется после перенесенного заболевания или вакцинации. Т.е. клетки в ответ на возбудитель начинают синтезировать необходимые антитела, такая память остается на годы или на всю жизнь. Вакцинация- целенаправленное введение в организм Ч заданного антигена в неагрессивной форме и в неагрессивных, но иммуногенных дозах с целью индукции защитного иммунного ответа и формирования иммунологической памяти для профилактики реального инфекционного заболевания в будущем. Вакцинация теоретически — самый лучший метод иммунотерапии и иммунопрофилактики. Вакцинация — это антигенспецифичная стимуляция иммунитета. Проблемы вакцинации: 1. биогенное (биотехнологическое) происхождение вакцинных препаратов, одна из сторон которого — применение живых аттенуированных(манипуляциях по ослаблению патогенных свойств м\орг in vitro или на Ж) вирусных вакцин. Никто не может реально прогнозировать персональный риск неблагоприятных последствий для конкретного Ч, даже если большинству других людей такая вакцинация не приносит видимого вреда.2. не каждого Ч в принципе может защитить какая бы то ни была стандартная вакцина. Кроме того, традиционными методами изготовления вакцинных препаратов пока не удалось получить эффективных вакцин против многих инфекционных заболеваний. Делом разработчиков вакцин должны стать разумное решение проблем и создание вакцинирующих препаратов, удовлетворяющих необходимым критериям:• вакцина не должна быть источником побочной биологической опасности;• вакцина не должна индуцировать патогенные иммунные процессы (типа усиливающих инфекцию антител и др.);• вакцина должна эффективно индуцировать протективный иммунитет; • если цель вакцинации, напротив, подавить какой-либо нежелательный иммунный процесс в организме, то вакцинный препарат должен индуцировать антигенспецифичную иммунологическую толерантность;• врач-иммунолог должен уметь контролировать создание заданного иммунитета у человека с помощью лабораторных методов.

Где вырабатываются антитела

Проникновение в организм человека тех или иных болезнетворных микроорганизмов не у всех людей вызывает заболевание. Отдельные лица обладают невосприимчивостьюко многим болезням. Например: скарлатиной заболевают лишь 40-50%детей, контактировавших с больными. Это говорит о том, что у человека имеются факторы и механизмы, препятствующие развитию инфекции.

Факторы защиты подразделяются на:

1. Неспецифические –кожа, слизистые оболочки, которые представляют задерживающий барьер. К ним относятся фагоциты – клетки-пожиратели (лейкоциты), которые находятся в крови, лимфоузлах, селезенке, красном костном мозге.

2. Специфические факторы – это решающие факторы в борьбе с инфекциями, они вырабатываются в организме. Они обусловливают специфическую невосприимчивостьорганизма к той инфекции, против которой они выработаны. Эту форму защиты называют иммунитетом.

Специфичность иммунитета выражается в том, что он обусловливает защиту лишь против одной инфекции и совершенно не влияет на восприимчивость к другим инфекциям. Так вещества, выработанные против возбудителя коклюша, бессильны против возбудителя коклюша, бессильны против возбудителя скарлатины.

Иммунный процесс –это ответ организма на определенного рода раздражение, на вторжение чужеродного агента – антигена.Под антигеном обычно понимают несвойственные данному организму соединения, чаще всего белки, проникшие в его внутреннюю среду, минуя желудочно-кишечный тракт. Антигенными свойствами обладают все белки, некоторые полисахариды и вещества смешанной природы. Антигенами могут быть живые тела (бактерии, микробы, вирусы), химические вещества. Антигенов насчитывают сотни тысяч.

Защищая организм от антигенов, кровь вырабатывает особые белковые тела – антитела (противотела), которые обезвреживают антигены.

В настоящее время хорошо известна химическая природа антител. Все они являются специфическими белками – гамма-глобулинами. Антитела образуются клетками лимфоузлов, селезенки, красного костного мозга. Отсюда они проникают в кровь и циркулируют по организму. Наиболее активно вырабатывают антитела лимфоциты и моноциты.

Защитные тела (антитела) по разному действуют на проникшие в организм микробы и чужеродные вещества. Одни антитела склеиваютмикроорганизмы, другие – осаждаютсклеенные частицы, а третьи разрушают и растворяют их.Такие антитела называют преципитинами.

Антитела, растворяющие бактерии, называют бактериолизинами.

Антитела, нейтрализующие токсины (яды) бактерий, змей, растений, называют антитоксинами.

Предыдущая17181920212223242526272829303132Следующая

Дата добавления: 2016-12-16; просмотров: 918;

ПОСМОТРЕТЬ ЕЩЕ:

В основе иммунитета лежит способность клеток крови

Покажет ли он на сроке 6-ть месяцев, наличие или отсутствие вируса в крови.

Поскольку носовые ходы у малышей более узкие, чем у в основе иммунитета лежит способность клеток крови постарше, носик забивается быстро.

Учитывая, что риск развития смертельных побочных список препаратов для повышения иммунитета для взрослых действий от употребления анальгина преобладает его терапевтический эффект, препарат был запрещен для лечения детей до 18 лет почти во всех странах мира.

Возненавидите, может быть меня, и в ненависти вашей будете справедливы. Можете купить лимфодренаж — специальный комплекс трав.

Упражнения следует начинать с нижней части грудного отдела позвоночника.

Вследствие этого повышается проницаемость плазматических мембран, что приводит к возрастанию активности аспартатаминотрансферазы, аланинаминотрансферазы и креатинкиназы в плазме в основе иммунитета продукты для восстановления иммунитета лежит способность клеток крови.

Даже если устраивают праздник, малыши еще не слишком понимают, что происходит.

Схожие записи:

Антитела

Антитела это крупные Y-образные белки, которые вырабатываются клетками плазмы и применяются иммунной системой в целях уничтожения чужеродных микроорганизмов (вирусов и бактерий).

Антитело по другому называется иммуноглобулин. Антитела это гликопротеины из суперсемейства иммуноглобулинов. Представляют большую часть гамма-глобулиновой фракции белков крови.

При попадании в организм патогена (антигена), его молекула распознается антителами через вариабельную область Fab.

На кончике каждого антитела содержится паратоп, который является специфичным для каждого конкретного эпитопа на антигене, что позволяет связываться этим структурам вместе с абсолютной точностью. Данный процесс связывания позволяет антителам помечать патогенные молекулы или клетки для последующей атаки клетками иммунной системы для их нейтрализации.

Такой процесс препятствует развитию заболевания, а также может активировать макрофаги для уничтожения вредных микроорганизмов. Производство антител возложено на гуморальную иммунную систему, это является основной ее функцией.

Взаимодействие антител с другими компонентами иммунной системы происходит через Fc-область.

Секреция антител происходит B-клетками адаптивной иммунной системы, чаще всего дифференцированными B-клетками (плазматическими клетками).

Антитела присутствуют в двух формах, а именно в растворимой, свободно распространяющиеся в плазме крови, а также в форме, связанной с мембраной, прикрепляющейся к поверхности B-клетки, называемыми B-клеточными рецепторами. B-клеточные рецепторы присутствуют только на поверхности B-клеток, что облегчает активацию этих клеток и их дифференциацию на различные области производства антител (плазматические клетки или клетки памяти) B-клеток, которые выживают в организме, запоминая определенный (тот же) антиген, что позволяет реагировать B-клеткам быстрее при следующем попадании этого антигена в организм.

Работа растворимых антител продолжается после их высвобождения в кровь и в другие жидкости организма, где они продолжают обследование чужеродных микроорганизмов.

Строение антител

Антитела это тяжелые примерно 150 кДа белки, содержащие сахарные цепи (гликаны), т.е. антитела это гликопротеины. Основной функциональной единицей каждого антитела является мономер иммуноглобулина.

В общем все антитела имеют примерно схожую структуру, но небольшая область на кончике белка очень изменчива, что позволяет существовать миллионам антител с различиями именно на этом кончике.

Данное место называется гипервариабельной областью. Каждый вариант кончика способен связываться с определенным антигеном. Такой огромный вариант антител-паратопов дает возможность иммунной системе связывать множество чужеродных микроорганизмов, вторгающихся в организм человека.

Большое разнообразие паратопов антител достигается за счет рекомбинации — процесса их случайной мутации в области гена антитела.

Паратоп антителя является полигенным и состоит из трех генов V, D, J. Паратопный локус полиморфен, поэтому при продуцировании антитела выбирается по одному аллелю из генов V, D, J, после чего сегменты генов соединяются вместе случайно генетической рекомбинацией для создания паратопа. Области, в которых гены случайным образом рекомбинируются вместе называются гиперпеременной областью, которая используется для распознавания антигенов. В ходе процесса под названием коммутация классов, происходит реорганизация генов антител, в результате чего один тип фрагмента Fc тяжелой цепи меняется на другой, создавая другой изотип антитела.

Такой процесс дает возможность использовать одно антитело различными типами Fc-рецепторов.

В состав антитела входят несколько основных структурных единиц с двумя большими тяжелыми и двумя небольшими легкими цепями. Тяжелые цепи антител имеют несколько различных типов, определяемых пятью типами кристаллизующихся фрагментов Fc, способные присоединяться к антигенсвязывающимся фрагментам. Пять различных типов областей Fc дают возможность антителам группироваться в пять изотипов. При этом каждая область Fc конкретного изотипа антитела имеет возможность связываться со своим специфическим Fc-рецептором, кроме lgD, являющимся по существу B-клеточным рецептором.

Это позволяет структуре антиген-антитело опосредовать разные роли, которые будут зависеть от Fc-рецептора с которым он связывается. При этом структуры гликанов, присутствующие в области Fc модулируют способность антител связываться с его соответствующим Fc-рецептором. Такая способность антител способствует направлению необходимого иммунного ответа на каждый отдельный тип патогенного объекта. Так например, lgE несет ответственность за аллергическую реакцию, которая представляет собой дегрануляцию тучных клеток и высвобождение гистамина.

В данном случае Fab-паратоп lgE связывается с аллергеном (антигеном), чем может быть частицы клещей, пыли и т.д., его Fc-область связывается с Fc-рецептором ε. Такая связь активирует аллергическую трансдукцию сигнала, индуцируя например астму.

Как действуют антитела

В ходе работы антител, паратоп антитела взаимодействует с эпитопом антигена, которых содержится несколько прерывисто расположенных вариантов вдоль его поверхности. При этом доминирующие эпитопы на поверхности антигена называют детерминантами.

Взаимодействие антитела и антигена строится по принципу замок-ключ в пространственной комплементарности. Следует отметить, что молекулярные силы, которые участвуют во взаимодействии Fab-эпитопов слабые и неспецифические.

К таким силам относятся электростатические силы, водородные связи, гидрофобные взаимодействия и силы Ван-дер-Ваальса. Это говорит о том, что связь антитела с антигеном не является абсолютной и может быть обратимым.

Это также позволяет антителу перекрестно реагировать с разными антигенами.

Бывает и так, что при связывании антитела с антигеном они становятся сами по себе иммунным комплексом, функционирующим как единый объект и действующим как антиген, на борьбу с которым будут направлены другие антитела. Пример таких молекул это гаптены, которые сами по себе не активируют иммунную систему, а делают это только после связывания с белками.

Основные функции антител следующие:

  • Агглютация.

    В данном процессе антитела склеивают посторонние клетки в комки, комки в свою очередь атакуются фагоцитами.

  • Активация комплемента или фиксация. При этом процессе происходит фиксация антител на враждебной клетке, что способствует ее атаке комплексом мембранной атаки, вызывая лизис враждебной клетки или процесс воспаления, притягивая клетки воспалители.
  • Нейтрализация. В ходе нейтрализации они блокируют части поверхности чужеродного антигена, делая его атаку неэффективной.
  • Осаждение.

    Осаждение начинается склеиванием сывороточно растворимых антигенов, которые затем выпадают в осадок в виде комков, которые также атакуются фагоцитами.

Происходит дифференцирование активированных B-клеток в продуцирующие антитела клетки или в клетки памяти, выживающие в организме следующие годы, что позволяет иммунной системе помнить антиген и осуществлять быструю реакцию на вторжение такого же объекта в будущем.

Антитела, связывающиеся с поверхностными антигенами, такими как бактерии, привлекают первый компонент каскада комплемента с их Fc областью, инициируя активацию классической системы комплемента.

Происходит уничтожение бактерии путем опсонизации — ее маркирования молекулой антитела для уничтожения фагоцитами или путем бактериолиза — комплекса мембранной атаки, позволяя уничтожать бактерию антителами напрямую.

При агглютинирование антитела связываются с патогенами, соединяя их вместе. Этому способствует наличие у антитела более одного паратопа. После того, как антитела покрыли патоген активируются эффекторные функции против патогена в клетках, распознающих свою Fc область.

Выработка антител в организме

Иммунная система, ответственная за биосинтез антител, состоит из ряда органов, основными из которых являются тимус, селезенка и периферические лимфоидные структуры в которых формируются три основных типа клеток: Т- и В-лимфоциты и макрофаги.

Антитела вырабатываются В-лимфоцитами, на поверхности которых уже имеются рецепторы, специфически связывающие антиген. В этот же комплекс включаются Т-лимфоциты и макрофаги.

В результате межклеточной кооперации происходит активация В-лимфоцитов и их трансформация в плазматические клетки. Большая часть образовавшихся плазматических клеток синтезирует антитела, аналогичные по специфичности рецепторам на поверхности В-лимфоцитов, и секретирует их в кровь.

Другая часть превращается в клетки «иммунологической памяти», способные выделять антитела при повторном введении антигена.

Каждый В-лимфоцит содержит на поверхности около 100 тыс. рецепторов одинаковой специфичности. Антиген, встречаясь в кровотоке с комплементарным рецептором, проводит отбор соответствующего В-лимфоцита, который затем, трансформируясь в плазматическую клетку и многократно делясь, образует клон клеток. Эта теория биосинтеза антител, впервые сформулированная П.

Эрлихом, а затем модифицированная в соответствии с уровнем развития науки Ф. Бернетом, получила название клонально-селекционной. Важно отметить, что каждый клон плазматических клеток секретирует гомогенные по своей структуре антитела.

Однако так как антиген активирует в крови сразу несколько типов В-лрмфоцитов, которые содержат рецепторы различной степени специфичности по отношению к исходному антигену, такой иммунный ответ называется поликлональным, а антитела — поликлональными.

Сыворотку животного, содержащую специфические к данному антигену антитела, называют антисывороткой. При этом обычно указывают, против какого антигена она выработана.

Например, когда говорят об антисыворотке кролика против эритроцитов человека, подразумевают, что в ответ на введение в кровь кролика эритроцитов человека образуются специфические к ним антитела. Принципиально важным является то, что поликлональные антитела даже против одной-единственной антигенной детерминанты гетерогенны как по структуре активного центра, так и по физико-химическим свойствам.

В том случае, если антиген поливалентен, например белок, то в сыворотке крови образуются антитела, направленные против каждой индивидуальной детерминанты, что еще более усложняет состав антител. Состав антител зависит от вида животного, а также стадии иммунного процесса.

Все перечисленные выше факторы влияют на гетерогенность антител и обусловливают определенные трудности как в изучении их структуры, так и в получении воспроизводимых стандартных препаратов антисывороток.

Работы Келера и Мильштейна по гибридизации животных клеток открыли принципиально новый путь получения антител. Сущность метода заключается в том, что из организма иммунизированного животного выделяются лимфоциты, которые специальным образом «сливаются» с миеломными клетками. Образующиеся клетки получили название гибридом.

Особенностью таких клеток является их способность размножаться и продуцировать антитела в искусственных условиях вне организма.

С помощью специальных методов клонирования можно выделить одну гибридную клетку, которая, размножаясь, будет секретировать в неограниченных количествах антитела только одного вида — моноклональные антитела.

Подчеркнем, что моноклональные антитела гомогенны как по специфичности, так и по физико-химическим свойствам.

В иммунной реакции организма наряду с фагоцитами участвуют лимфоциты. По функции и месту созревания лимфоциты разделяются на Т-лимфоциты (тимусзависимые) и В-лимфоциты (бурсазависимые). Известно, что макрофаги обнаруживают антигены и в процессе фагоцитоза выводят на клеточную поверхность неразрушенную часть антигена, где он распознается Т- и В-лимфоцитами.

Различают несколько разновидностей Т-лимфоцитов.

Т-киллеры (убийцы) способны убивать чужеродные клетки, например, опухолевые, клетки-мутанты, клетки чужеродных тканей трансплантантов. Т-супрессоры (угнетатели) блокируют чрезмерные реакции В-лимфоцитов, благодаря чему поддерживают гармоничное развитие иммунитета.

Т-хелперы (помощники) стимулируют реакции иммунитета путём взаимодействия с В-лимфоцитами, превращая их в плазматические клетки, которые синтезируют антитела (иммуноглобулины) и выделяют их в кровь, лимфу, тканевую жидкость. Иммуноглобулины способны нейтрализовать (обезвредить) чужеродные вещества (антигены). Антитела по-разному действуют на антигены: либо склеивают их, либо разрушают, либо растворяют, то есть выводят из строя.

Основная функция В-лимфоцитов – создание гуморального иммунитета путём выработки антител.

Согласно теории гуморального иммунитета, все иммунные процессы происходят в жидких средах организма (от лат.humor – жидкость).

Процесс выработки антител схематически представляется в следующем виде. Существует необозримо большое количество клонов мезенхимальных клеток, отличающихся своей способностью реагировать на антиген.

Антиген отбирает из предсуществующих клонов клеток только те, с которыми он может реагировать, стимулируя их размножение. Следствием этого является увеличение количества клеток, обладающих сродством к данному антигену, образуется «клон» этих клеток, вырабатывающих специфические к данному клону антитела.

Если антигенная стимуляция чрезмерна в силу избытка антигена или повышенной возбудимости клеток (во время их усиленного размножения в эмбриональном периоде), то клетка отвечает торможением своей активности.

Явление иммунологической толерантности и распознавание «своего» объясняется подавлением в эмбриональном периоде клонов клеток, преадаптированных к своим и вводимым извне антигенам.

Клонально-селекционная теория хорошо соответствует большинству известных в настоящее время в иммунологии фактов. Однако и против нее выставлен целый ряд вполне обоснованных доводов.

Наиболее часто подвергается сомнению возможность существования в организме клонов клеток, иммунологически компетентных по отношению ко всем антигенам, в том числе и вновь синтезированным и даже еще не синтезированным.

в организме существуют клоны клеток, в большей или меньшей степени преадаптированные к определенным антигенам.

Под влиянием антигенного стимула начинается усиленная пролиферация этого клона. В ходе случайных мутаций клеток в силу продолжающегося антигенного раздражения усиленно размножаются клетки, обладающие все возрастающим родством к антигену вплоть до формулы «как ключ к замку».

Гуморальный иммунитет

Гуморальный иммунитет открыл немецкий фармаколог Пауль Эрлих, который был современником И.И.Мечникова, открывшего клеточный иммунитет.

Пауль Эрлих знал о том факте, что в сыворотке крови животных, зараженных бактериями, появляются белковые вещества, способные убивать патогенные микроорганизмы. Эти вещества впоследствии были названы «антителами», а болезнетворные микробы и их токсины были названы «антигенами».

Самое характерное свойство антител – это их ярко выраженная специфичность. Как отмечал Пауль Эрлих, «отношения между токсином (антигеном) и антитоксином (антигеном) носят строго специфичный характер – например, столбнячный антитоксин нейтрализует исключительно яд столбняка…

противозмеиная сыворотка – только яд змеи и т.д.».

Характерными особенностями гуморального иммунитета являются:

1) иммунологическая специфичность (один антиген – одно антитело); 2) при инфекциях усиленная продукция соответствующих антител; 3) способность сохранять память о первой встрече с антигеном.

Именно последнее свойство специфического иммунитета лежит в основе вакцинации.


Смотрите также