Гипоталамус гормон роста биосинтез белка рост организма


ГОРМОНЫ ГИПОТАЛАМУСА

Гипоталамус служит местом непосредственного взаимодействия высших отделов ЦНС и эндокринной системы. Природа связей, существующих между ЦНС и эндокринной системой, стала проясняться в последние десятилетия, когда из гипоталамуса были выделены первые гуморальные факторы, оказавшиеся гормональными веществами с чрезвычайно высокой биологической активностью. Потребовалось немало труда и экспериментального мастерства, чтобы доказать, что эти вещества образуются в нервных клетках гипоталамуса, откуда по системе портальных капилляров достигают гипофиза и регулируют секрецию гипофизарных гормонов, точнее их освобождение (возможно, и биосинтез). Эти вещества получили сначала наименование нейрогормонов, а затем рилизинг-факторов (от англ. release – освобождать), или либеринов. Вещества с противоположным действием, т.е. угнетающие освобождение (и, возможно, биосинтез) гипофизар-ных гормонов, стали называть ингибирующими факторами, или статинами. Таким образом, гормонам гипоталамуса принадлежит ключевая роль в физиологической системе гормональной регуляции многосторонних биологических функций отдельных органов, тканей и целостного организма.

К настоящему времени в гипоталамусе открыто 7 стимуляторов (либерины) и 3 ингибитора (статины) секреции гормонов гипофиза, а именно: кортиколиберин, тиролиберин, люлиберин, фоллилиберин, соматолиберин, пролактолиберин, меланолиберин, соматостатин, пролактостатин и меланостатин (табл. 8.1). В чистом виде выделено 5 гормонов, для которых установлена первичная структура, подтвержденная химическим синтезом.

Большие трудности при получении гормонов гипоталамуса в чистом виде объясняются чрезвычайно низким содержанием их в исходной ткани. Так, для выделения всего 1 мг тиролиберина потребовалось переработать 7 т гипоталамусов, полученных от 5 млн овец.

Следует отметить, что не все гормоны гипоталамуса, по-видимому, строго специфичны в отношении одного какого-либо гипофизарного гормона. В частности, для тиролиберина показана способность освобождать, помимо тиротропина, также пролактин, а для люлиберина, помимо лютеи-низирующего гормона,– также фолликулостимулирующий гормон.

1 Гипоталамические гормоны не имеют твердо установленных наименований. Рекомендуется в первой части названия гормона гипофиза добавлять окончание «либерин»; например, «тиролиберин» означает гормон гипоталамуса, стимулирующий освобождение (и, возможно, синтез) тиротропина - соответствующего гормона гипофиза. Аналогичным образом образуют названия факторов гипоталамуса, ингибирующих освобождение (и, возможно, синтез) троп-ных гормонов гипофиза,- добавляют окончание «статин». Например, «соматостатин» означает гипоталамический пептид, ингибирующий освобождение (или синтез) гормона роста гипофиза - соматотропина.

Установлено, что по химическому строению все гормоны гипоталамуса являются низкомолекулярными пептидами, так называемыми олигопепти-дами необычного строения, хотя точный аминокислотный состав и первичная структура выяснены не для всех. Приводим полученные к настоящему времени данные о химической природе шести из известных 10 гормонов гипоталамуса.

1. Тиролиберин (Пиро-Глу–Гис–Про–Nh3):

Тиролиберин представлен трипептидом, состоящим из пироглутаминовой (циклической) кислоты, гистидина и пролинамида, соединенных пептидными связями. В отличие от классических пептидов он не содержит свободных Nh3- и СООН-групп у N- и С-концевых аминокислот.

2. Гонадолиберин является декапептидом, состоящим из 10 аминокислот в последовательности:

Пиро-Глу–Гис–Трп–Сер–Тир–Гли–Лей–Арг–Про–Гли-NН2

Концевая С-аминокислота представлена глицинамидом.

3. Соматостатин является циклическим тетрадекапептидом (состоит из 14 аминокислотных остатков) :

Отличается этот гормон от двух предыдущих, помимо циклической структуры, тем, что не содержит на N-конце пироглутаминовой кислоты: дисульфидная связь образуется между двумя остатками цистеина в 3-м и 14-м положениях. Следует отметить, что синтетический линейный аналог соматостатина также наделен аналогичной биологической активностью, что свидетельствует о несущественности дисульфидного мостика природного гормона. Помимо гипоталамуса, соматостатин продуцируется нейронами центральной и периферической нервных систем, а также синтезируется в S-клетках панкреатических островков (островков Лангерганса) в поджелудочной железе и клетках кишечника. Он оказывает широкий спектр биологического действия; в частности, показано ингибирующее действие на синтез гормона роста в аденогипофизе, а также прямое тормозящее действие его на биосинтез инсулина и глюкагона в β- и α-клетках островков Лангерганса.

4. Соматолиберин недавно выделен из природных источников. Он представлен 44 аминокислотными остатками с полностью раскрытой последовательностью. Биологической активностью соматолиберина наделен, кроме того, химически синтезированный декапептид:

Н-Вал–Гис–Лей–Сер–Ала–Глу–Глн–Лиз–Глу–Ала-ОН.

Этот декапептид стимулирует синтез и секрецию гормона роста гипофиза соматотропина.

5. Меланолиберин, химическая структура которого аналогична структуре открытого кольца гормона окситоцина (без трипептидной боковой цепи), имеет следующее строение:

Н-Цис–Тир–Иле–Глн–Асн–Цис-ОН.

6. Меланостатин (меланотропинингибирующий фактор) представлен или трипептидом: Пиро-Глу–Лей–Гли-NН2, или пентапептидом со следующей последовательностью:

Пиро-Глу–Гис–Фен–Aрг–Гли–NН2.

Необходимо отметить, что меланолиберин оказывает стимулирующее действие, а меланостатин, напротив, ингибирующее действие на синтез и секрецию меланотропина в передней доле гипофиза.

Помимо перечисленных гипоталамических гормонов, интенсивно изучалась химическая природа другого гормона – кортиколиберина . Активные препараты его были выделены как из ткани гипоталамуса, так и из задней доли гипофиза; существует мнение, что последняя может служить депо гормона для вазопрессина и окситоцина. Недавно выделен состоящий из 41 аминокислоты с выясненной последовательностью кортиколиберин из гипоталамуса овцы.

Местом синтеза гипоталамических гормонов, вероятнее всего, являются нервные окончания – синаптосомы гипоталамуса, поскольку именно там отмечена наибольшая концентрация гормонов и биогенных аминов. Последние рассматриваются наряду с гормонами периферических желез внутренней секреции, действующих по принципу обратной связи, в качестве основных регуляторов секреции и синтеза гормонов гипоталамуса. Механизм биосинтеза тиролиберина, осуществляющегося, скорее всего, нерибо-собальным путем, включает участие SH-содержащей синтетазы или комплекса ферментов, катализирующих циклизацию глутаминовой кислоты в пироглутаминовую, образование пептидной связи и амидирование проли-на в присутствии глутамина. Существование подобного механизма биосинтеза с участием соответствующих синтетаз допускается также в отношении гонадолиберина и соматолиберина.

Пути инактивации гормонов гипоталамуса изучены недостаточно. Период полураспада тиролиберина в крови крысы составляет 4 мин. Инактивация наступает как при разрыве пептидной связи (под действием экзо-и эндопептидаз сыворотки крови крысы и человека), так и при отщеплении амидной группы в молекуле пролинамида. В гипоталамусе человека и ряда животных открыт специфический фермент пироглутамилпептидаза, которая катализирует отщепление от тиролиберина или гонадолиберина молекулы пироглутаминовой кислоты.

Гипоталамические гормоны непосредственно влияют на секрецию (точнее, освобождение) «готовых» гормонов и биосинтез этих гормонов de novo. Доказано, что цАМФ участвует в передаче гормонального сигнала. Показано существование в плазматических мембранах клеток гипофиза специфических аденогипофизарных рецепторов, с которыми связываются гормоны гипоталамуса, после чего через систему аденилатциклазы и мембранных комплексов Са2+–АТФ и Mg2+–АТФ освобождаются ионы Са2+ и цАМФ; последний действует как на освобождение, так и на синтез соответствующего гормона гипофиза путем активирования протеинкиназы (см. далее).

Для выяснения механизма действия рилизинг-факторов, включая их взаимодействие с соответствующими рецепторами, большую роль сыграли структурные аналоги тиролиберина и гонадолиберина. Некоторые из этих аналогов обладают даже более высокой гормональной активностью и пролонгированным действием, чем природные гормоны гипоталамуса. Однако предстоит еще большая работа по выяснению химического строения уже открытых рилизинг-факторов и расшифровке молекулярных механизмов их действия.

Предыдущая страница | Следующая страница

СОДЕРЖАНИЕ

___

Гипофиз и гипоталамус - Likar.Info

Эндокринная система организма человека объединяет небольшие по величине и различные по своему строению и функциям железы внутренней секреции: гипофиз, эпифиз, щитовидную и околощитовидные железы, поджелудочную железу, надпочечники и половые железы. Все вместе взятые, они весят не более 100 граммов, а количество вырабатываемых ими гормонов может исчисляться и миллиардными долями грамма. И тем не менее сфера влияния гормонов исключительно велика. Они оказывают прямое воздействие на рост и развитие организма, на все виды обмена веществ, на половое созревание.

Между железами внутренней секреции нет прямых анатомических связей, но существует взаимозависимость функций одной железы от других. Эндокринную систему здорового человека можно сравнить с хорошо сыгранным оркестром, в котором каждая железа уверенно и тонко ведет свою партию. А в роли дирижера этого “оркестра” выступает главная, верховная железа внутренней секреции— гипофиз.

Это бобовидное образование весом 0,5—0,6 грамма располагается в костном углублении дна черепа, названном турецким седлом. Две доли гипофиза— передняя (аденогипофиз) и задняя (нейрогипофиз) — отличаются строением и функциями.

Большая по размерам передняя доля гипофиза выделяет в кровь шесть тройных гормонов. Один из них — гормон роста, или соматотропный (СТГ) — стимулирует рост скелета, активизирует биосинтез белка, способствует увеличению размеров тела. Если в результате каких-либо нарушений гипофиз начинает вырабатывать слишком много СТГ, рост тела резко увеличивается, развивается гигантизм. В тех случаях, когда повышенное выделение гормона роста происходит у взрослого человека, это сопровождается акромегалией — увеличением не всего тела, а лишь его отдельных частей: носа, подбородка, языка, рук и ног. При недостаточной выработке гипофизом соматотропного гормона у ребенка приостанавливается рост и развивается гипофизарная карликовость.

Остальные пять гормонов: адренокортикотропный (АКТГ), тиреотропный (ТТГ), пролактин, фолликулостимулирующий (ФСГ) и лютеинизирующий (ЛГ) — направляют и регулируют деятельность других желез внутренней секреции.

Адренокортикотропный гормон стимулирует деятельность коры надпочечников, заставляя ее в случае необходимости более интенсивно вырабатывать кортикостероиды.

Тиреотропный гормон способствует образованию и выделению гормона щитовидной железы тироксина.

Фолликулостимулирующий гормон у женщин способствует созреванию яйцеклетки, а у мужчин стимулирует сперматогенез.

В тесном контакте с ним действует лютеинизирующий гормон. Именно благодаря ЛГ у женщин формируется так называемое желтое тело— образование, без которого невозможно нормальное течение беременности.

В процессах репродукции активное участие принимает также пролактин, или лактогенный гормон. От этого гормона во многом зависит величина и форма молочных желез; через сложную систему взаимосвязей различных гормонов он стимулирует выработку грудного молока у женщины после родов.

Вот насколько значительно влияние лишь одной передней доли гипофиза!

Однако, являясь верховной железой эндокринной системы, гипофиз сам подчиняется центральной нервной системе, и в частности гипоталамусу. Этот высший вегетативный центр постоянно координирует, регулирует деятельность различных отделов мозга, всех внутренних органов. Частота сердечных сокращений, тонус кровеносных сосудов, температура тела, количество воды в крови и тканях, накопление или расход белков, жиров, углеводов, минеральных солей— словом, существование нашего организма, постоянство его внутренней среды находится под контролем гипоталамуса.

Гипоталамус руководит гипофизом, используя и нервные связи, и систему кровеносных сосудов. Кровь, которая поступает в переднюю долю гипофиза, обязательно проходит через серединное возвышение гипоталамуса и обогащается там гипотала-мическими нейрогормонами.

Нейрогормоны — это вещества пептидной природы, которые представляют собой части белковых молекул. К настоящему времени обнаружено семь нейрогормонов, так называемых либеринов (то есть освободителей), которые стимулируют в гипофизе синтез тропных гормонов. А три нейрогормона— пролактостатин, меланостатин и соматостатин,— напротив, тормозят их выработку.

К нейрогормонам относят также вазопрессин и окситоцин. Продуцируют их нервные клетки ядер гипоталамуса, а затем по собственным аксонам (нервным отросткам) транспортируют в заднюю долю гипофиза, и уже отсюда эти гормоны поступают в кровь, оказывая сложное воздействие на системы организма.

Окситоцин стимулирует сокращение гладкой мускулатуры матки при родах, выработку молока молочными железами. Вазопрессин активно участвует в регуляции транспорта воды и солей через клеточные мембраны, под его влиянием уменьшается просвет кровеносных сосудов и, следовательно, повышается давление крови. За то, что этот гормон обладает способностью задерживать воду в организме, его часто называют антидиуретическим гормоном (АДГ). Главной точкой приложения АДГ являются почечные канальцы, где он стимулирует обратное всасывание воды из первичной мочи в кровь. Когда в результате нарушений деятельности гипоталамо-гипофизарной системы продукция АДГ резко снижается, развивается несахарный диабет — мочеизнурение. Его основные симптомы — сильная жажда и повышенное отделение мочи. Однако не следует думать, что гипоталамус и гипофиз лишь отдают приказы, спуская по цепочке “руководящие” гормоны. Они и сами чутко анализируют сигналы, поступающие с периферии, от желез внутренней секреции. Деятельность эндокринной системы осуществляется на основе универсального принципа обратной связи. Избыток гормонов той или иной железы внутренней секреции тормозит выделение специфического гормона гипофиза, ответственного за работу данной железы, а недостаток побуждает гипофиз усилить выработку соответствующего тройного гормона.

Механизм взаимодействия между нейрогормонами гипоталамуса, тройными гормонами гипофиза и гормонами периферических желез внутренней секреции в здоровом организме отработан длительным эволюционным развитием и весьма надежен. Однако достаточно сбоя в одном звене этой сложной цепи, чтобы произошло нарушение количественных, а порой и качественных соотношений в целой системе, влекущее за собой различные эндокринные заболевания.

И хотя современная медицина владеет гормональными препаратами, с помощью которых удается бороться с нарушением функций эндокринных желез, гормональная терапия и по сей день остается, пожалуй, одной из самых сложных и ответственных областей лекарственной терапии.

Эндокринная система организма человека – гипофиз и гипоталамус

Эндокринная система организма человека объединяет небольшие по величине и различные по своему строению и функциям железы внутренней секреции: гипофиз, эпифиз, щитовидную и околощитовидные железы, поджелудочную железу, надпочечники и половые железы. — Все вместе взятые, они весят не более 100 граммов, а количество вырабатываемых ими гормонов может исчисляться и миллиардными долями грамма. И тем не менее сфера влияния гормонов исключительно велика. Они оказывают прямое воздействие на рост и развитие организма, на все виды обмена веществ, на половое созревание. Между железами внутренней секреции нет прямых анатомических связей, но существует взаимозависимость функций одной железы от других. Эндокринную систему здорового человека можно сравнить с хорошо сыгранным оркестром, в котором каждая железа уверенно и тонко ведет свою партию. А в роли дирижера этого «оркестра» выступает главная, верховная железа внутренней секреции— гипофиз. Это бобовидное образование весом 0,5—0,6 грамма располагается в костном углублении дна черепа, названном турецким седлом. Две доли гипофиза— передняя (аденогипофиз; и задняя (нейрогипофиз) — отличаются строением и функциями. Большая по размерам передняя доля гипофиза выделяет в кровь шесть тропных гормонов. Один из них — гормон роста, или соматотропный (СТГ) — стимулирует рост скелета, активизирует биосинтез белка, способствует увеличению размеров тела. Если в результате каких-либо нарушений гипофиз начинает вырабатывать слишком много СТГ, рост тела резко увеличивается, развивается гигантизм. В тех случаях, когда повышенное выделение гормона роста происходит у взрослого человека, это сопровождается акромегалией— увеличением не всего тела, а лишь его отдельных частей: носа, подбородка, языка, рук и ног. При недостаточной выработке гипофизом соматотропного гормона у ребенка приостанавливается рост и развивается гипофизарная карликовость. Остальные пять гормонов: адренокортикотропный (АКТГ), тиреотропный (ТТГ), пролактин, фолликулостимулирующий (ФСГ) и лютеинизирующий (ЛГ)— направляют и регулируют деятельность других желез внутренней секреции. Адренокортикотропный гормон стимулирует деятельность коры надпочечников, заставляя ее в случае необходимости более интенсивно вырабатывать кортикостероиды. Тиреотропный гормон способствует образованию и выделению гормона щитовидной железы тироксина. Фолликулостимулирующий гормон у женщин способствует созреванию яйцеклетки, а у мужчин стимулирует сперматогенез. В тесном контакте с ним действует лютеинизирующий гормон. Именно благодаря ЛГ у женщин формируется так называемое желтое тело— образование, без которого невозможно нормальное течение беременности. В процессах репродукции активное участие принимает также пролактин, или лактогенный гормон. От этого гормона во многом зависит величина и форма молочных желез; через сложную систему взаимосвязей различных гормонов он стимулирует выработку грудного молока у женщины после родов. Вот насколько значительно влияние лишь одной передней доли гипофиза!

Однако, являясь верховной железой эндокринной системы, гипофиз сам подчиняется центральной нервной системе, и в частности гипоталамусу. Этот высший вегетативный центр постоянно координирует, регулирует деятельность различных отделов мозга, всех внутренних органов. Частота сердечных сокращений, тонус кровеносных сосудов, температура тела, количество воды в крови и тканях, накопление или расход белков, жиров, углеводов, минеральных солей— словом, существование нашего организма, постоянство его внутренней среды находится под контролем гипоталамуса.

Гипоталамус руководит гипофизом, используя и нервные связи, и систему кровеносных сосудов. Кровь, которая поступает в переднюю долю гипофиза, обязательно проходит через серединное возвышение гипоталамуса и обогащается там гипотала-мическими нейрогормонами. Нейрогормоны — это вещества пептидной природы, которые представляют собой части белковых молекул. К настоящему времени обнаружено семь нейрогормонов, так называемых либеринов (то есть освободителей), которые стимулируют в гипофизе синтез тропных гормонов. А три нейрогормона— про-лактостатин, меланостатин и соматостатин,— напротив, тормозят их выработку. К нейрогормонам относят также вазопрессин и оксито-цин. Продуцируют их нервные клетки ядер гипоталамуса, а затем по собственным аксонам (нервным отросткам) транспортируют в заднюю долю гипофиза, и уже отсюда эти гормоны поступают в кровь, оказывая сложное воздействие на системы организма.

Окситоцин стимулирует сокращение гладкой мускулатуры матки при родах, выработку молока молочными железами. Вазопрессин активно участвует в регуляции .транспорта воды и солей через клеточные мембраны, под его влиянием уменьшается просвет кровеносных сосудов и, следовательно, повышается давление крови. За то, что этот гормон обладает способностью задерживать воду в организме, его часто называют антидиуретическим гормоном (АДГ). Главной точкой приложения АДГ являются почечные канальцы, где он стимулирует обратное всасывание воды из первичной мочи в кровь. Когда в результате нарушений деятельности гипоталамо-гипофизарной системы продукция АДГ  резко снижается, развивается несахарный диабет — мочеизнурение. Его основные симптомы — сильная жажда и повышенное отделение мочи. Однако не следует думать, что гипоталамус и гипофиз лишь отдают приказы, спуская по цепочке «руководящие» гормоны. Они и. сами чутко анализируют сигналы, поступающие с периферии, от желез внутренней секреции. Деятельность эндокринной системы осуществляется на основе универсального принципа обратной связи. Избыток гормонов той или иной железы внутренней секреции тормозит выделение специфического гормона гипофиза, ответственного за работу данной железы, а недостаток побуждает гипофиз усилить выработку соответствующего тройного гормона.

Механизм взаимодействия между нейрогормонами гипоталамуса, тройными гормонами гипофиза и гормонами периферических желез внутренней секреции в здоровом организме отработан длительным эволюционным развитием и весьма надежен. Однако достаточно сбоя в одном звене этой сложной цепи, чтобы произошло нарушение количественных, а порой и качественных соотношений в целой системе, влекущее за собой различные эндокринные заболевания. И хотя современная медицина владеет гормональными препаратами, с помощью которых удается бороться с нарушением функций эндокринных желез, гормональная терапия и по сей день остается, пожалуй, одной из самых сложных и ответственных областей лекарственной терапии.

При нарушениях функций эндокринной системы компания САД предлагает Виоргон 29 — Биофлуревит Гипоталамуса, который способствует нормализации нейроэндокринной деятельности мозга и поддержания гомеостаза организма. Нормализует выделение гормонов и нейропептидов, влияющих на регуляцию таких функций, как ощущение голода и жажды, терморегуляцию организма, половое поведение, сон и бодрствование (циркадные ритмы). Способствует нормализации высших функций, таких как память и эмоциональное состояние.

Виоргон 16- Биофлуревит костного мозга Улучшает состояние при нарушении кроветворения. Рекомендуется постоянный прием для онкологических больных в период лучевой и химиотерапии (совместно с Виоргон-1, Виоргон-5, Виоргон-6), а также при лучевой болезни

Виоргон 12 Биофлуревит щитовидной железы

Улучшает состояние при заболеваниях щитовидной железы (гипа- и гипертиреозы), при новообразованиях в щитовидной железе. Виоргон 30 Биофлуревит надпочечников Способствует нормализации образования гормонов, влияющих на процессы обмена веществ, в том числе способствущих превращению белков в углеводы и повышающих устойчивость организма к неблагоприятным воздействиям, регулирующих солевой обмен в организме, повышающих реабсорбцию Na+ и выделение K+ в почках, стимулирующих образование глюкозы из жиров и аминокислот, угнетающих воспалительные, иммунные и аллергические реакции, уменьшающих разрастание соединительной ткани, а также повышающих чувствительность органов чувств и возбудимость нервной системы. Также способствует нормализации системы образования половых гормонов, влияющих на вторичные половые признаки и адреналина.

Виоргон 8 — Биофлуревит поджелудочной железы

Значительно улучшает состояние при панкреатитах (как острых, так и хронических). Может применяться в качестве сопутствующего средства при диабете 2-го типа, новообразованиях в железе (совместно с Виоргоном-7 при панкреохолецистите и холеопанкреатитах)

Виоргон-13- Биофлуревит яичников

Улучшает состояние при нарушениях менструального цикла, дисфункции яичников, при бесплодии (совместно с Виоргон-1). При новообразованиях и кистах яичников в качестве сопутствующих препаратов совместно с Виоргон-1, Виоргон-3, Виоргон-12.

Виоргон-14 — Биофлуревит предстательной железы

Улучшает состояние при простатитах, аденоме и аденокарциноме предстательной железы в качестве сопутствующего средства (совместно с Виоргон-1 и Виоргон-3)

Все о гормонах. Гипоталамус.

Добавить в избранное

Гипоталамус служит местом непосредственного взаимодействия высших отделов ЦНС и эндокринной системы. Природа связей, существующих между ЦНС и эндокринной системой, стала проясняться в последние десятилетия, когда из гипоталамуса были выделены первые гуморальные факторы, оказавшиеся гормональными веществами с чрезвычайно высокой биологической активностью. Потребовалось немало труда и экспериментального мастерства, чтобы доказать, что эти вещества образуются в нервных клетках гипоталамуса, откуда по системе портальных капилляров достигают гипофиза и регулируют секрецию гипофизарных гормонов, точнее их освобождение. Эти вещества получили сначала наименование нейрогормонов, а затем рилизинг-факторов (от англ.release – освобождать), или либеринов. Вещества с противоположным действием, т.е. угнетающие освобождение гипофизарных гормонов, стали называть ингибирующими факторами, или статинами. Таким образом, гормонам гипоталамуса принадлежит ключевая роль в физиологической системе гормональной регуляции многосторонних биологических функций отдельных органов, тканей и целостного организма.

Анатомическое строение

Гипоталамус - главный подкорковый центр регуляции вегетативно-висцеральных и эндокринных функций.

Он занимает вентральную часть промежуточного мозга и располагается ниже подбугорной борозды, sulcus hypothalamicus. Делится на зрительную и обонятельную части, pars optica et pars olfactoria.

В настоящее время в гипоталамусе описано 32-48 ядер, являющимися высшими вегетативными центрами, регулирующими все виды обмена веществ, терморегуляцию и т. д.

    Различают три основные области скопления групп нервных клеток гипоталамуса:
  1. переднюю;
  2. промежуточную;
  3. заднюю.

Некоторые ядра обладают нейросекреторной функцией (супраоптические, паравентрикулярные, дугообразные и вентромедиальные).

Гистологическое строение

Гипоталамус - участок промежуточного мозга, содержащий особые нейросекреторные ядра, клетки которых вырабатывают и секретируют в кровь нейрогормоны. Эти клетки получают афферентные импульсы из других частей нервной системы, а их аксоны оканчиваются на кровеносных сосудах (аксо-вазальные синапсы).

Нейросекреторные клетки - отростчатой формы, с крупным везикулярным ядром, хорошо заметным ядрышком и базофильной цитоплазмой, содержащей развитую грЭПС и крупный комплекс Гольджи, от которого отделяются нейросекреторные гранулы (рис. 1). Гранулы транспортируются со скоростью около 1-4 мм/ч по аксону вдоль центрального пучка микротрубочек и микрофиламентов, а местами накапливаются в больших количествах, растягивая аксон. Самые крупные из таких участков хорошо видны под световым микроскопом и называются накопительными нейросекреторными тельцами (Херринга); в них сосредоточено до 60% всего нейросекрета, лишь около 30% находится в области терминалей. Терминали (аксо-вазальные синапсы) характеризуются присутствием, помимо гранул, многочисленных светлых пузырьков (осуществляют возврат мембраны после экзоцитоза).

Рис. 1. Ультраструктурная организация нейросекреторных клеток.А - аксон, ABC - аксо-вазапьный синапс, КАП - капилляр, ННСТ - накопительное нейросекреторное тельце, НСГ - нейросекреторные гранулы.

Нейросекреторные ядра гипоталамуса в зависимости от размеров клеток и их функциональных особенностей разделяют на крупно- и мелкоклеточные.

1. Крупноклеточные ядра образованы клеточными телами, которые в 2-3 раза крупнее, чем в других отделах гипоталамуса; к ним относятся супраоптическое (СОЯ) и паравентрикулярное (ПВЯ) ядра. СОЯ в 3-4 раза объемнее ПВЯ; ПВЯ лишь в центральных участках построено по типу крупноклеточного, а в периферических отделах образовано мелкими нейросекреторными клетками. Аксоны клеток СОЯ и ПВЯ покидают гипоталамус и, в составе гипоталамо-гипофизарного тракта пересекая гемато-энцефалическип барьер, проникают в заднюю долю гипофиза, где образуют терминали на капиллярах (рис. 2). Крупноклеточные ядра секретируют антидиуретический гормон (АДГ) или вазопрессин (ВП), и окситоцин. Эти гормоны вырабатываются разными клетками. У человека АДГ образуется, главным образом, в СОЯ, а окситоцин - в ПВЯ. АДГ и окситоцин синтезируются в грЭПС (в виде крупной молекулы прогормона) и переносятся в комплекс Гольджи, где упаковываются в гранулы. Процессинг продукта (завершается лишь в ходе транспорта гранул в аксоне) приводит к освобождению активного гормона и нейрофизина - белка с неясной функцией (ранее считали переносчиком нейрогормонов).

Рис. 2. Схема строения гипоталамо-гипофизарной нейросекреторной системы.ПДГ - передняя доля гипофиза, ПРДГ - промежуточная доля гипофиза, ЗДГ - задняя доля гипофиза, ККН - крупноклеточные нейроны, МКН - мелкоклеточные нейроны ПЗН - перекрест зрительных нервов, ГЭБ - гемато-энцефалический барьер, ПКС - первичная капиллярная сеть, ВКС - вторичная капиллярная сеть.

2. Мелкоклеточные ядра вырабатывают ряд гипофизотропных факторов, которые усиливают (рилизинг факторы или либерины) или угнетают (ингабирующие факторы или статины) выработку гормонов клетками передней доли, попадая к ним по воротной системе сосудов. Аксоны нейросекреторных клеток этих ядер образуют терминалы на первичной капиллярной сети в срединном возвышении (нейрогемальной контактной зоне). Эта сеть далее собирается в воротные вены, проникающие в переднюю долю гипофиза и распадающиеся на вторичную сеть капилляров между тяжами железистых клеток - аденоцитов (см. рис. 2).

Физиология гипоталамуса

Основные связи между нервной и эндокринной системами регуляции осуществляются посредством взаимодействия гипоталамуса и гипофиза (рис. 3).

Нервные импульсы, приходящие в гипоталамус, активируют секрецию так называемых рилизинг-факторов (либеринов и статинов): тиреолиберина, соматолиберина, пролактолиберина, гонадолиберина и кортиколиберина, а также соматостатина и пролактостатина. Мишенью для либеринов и статинов, секретируемых гипоталамусом, является гипофиз. Каждый из либеринов взаимодействует с определенной популяцией клеток гипофиза и вызывает в них синтез соответствующих тропинов: тиреотропина, соматотропного гормона (соматотропин — гормон роста), пролактина, гонадотропного гормона, (гонадотропины — лютеинизирующий и фолликулостимулирующий), а также адренокортикотропного гормона (АКТГ, кортикотропин). Статины оказывают на гипофиз влияние, противоположное действию либеринов, — подавляют секрецию тропинов. Тропины, секретируемые гипофизом, поступают в общий кровоток и, попадая на соответствующие железы, активируют в них секреторные процессы.

Рис 3. Регуляция активности эндокринных желез центральной нервной системой при участии гипоталамуса и гипофиза. ТЛ — тиреолиберин; СЛ — соматалиберин; СС — соматостатин; ПЛ — пролактолиберин; ГЛ — гонадолиберин; КЛ — кортиколиберин; ТТГ — тиреотропный гормон; СТГ — соматотропный гормон (гормон роста); Пр — пролактин; ФСГ — фолликулостимулирующий гормон; ЛГ — лютеиниэирующий гормон; АКТГ — адренокортикотропный гормон. Сплошными стрелками обозначено активирующее, пунктирными — ингибирующее влияние.

Регуляция деятельности гипофиза и гипоталамуса, кроме сигналов, идущих «сверху вниз», осуществляется гормонами «исполнительных» желез (рис. 3). Эти «обратные» сигналы поступают в гипоталамус и затем передаются в гипофиз, что приводит к изменению секреции соответствующих тропинов. После удаления или атрофии эндокринной железы стимулируется секреция соответствующего тропного гормона; при гиперфункции железы секреция соответствующего тропина подавляется.

Рис.4 Прямые и обратные связи в нейроэндокринной системе регуляции.1 — медленно развивающееся и продолжительное ингибирование секреции гормонов и нейромедиаторов, а также изменение поведения и формирование памяти; 2 — быстро развивающееся, но продолжительное ингибирование; 3 — кратковременное ингибирование.

Обратные связи не только позволяют регулировать концентрацию гормонов в крови, но и участвуют в дифференцировке гипоталамуса в онтогенезе. Образование половых гормонов в женском организме происходит циклически, что объясняется циклической секрецией гонадотропных гормонов. Синтез этих гормонов контролируется ги­поталамусом, образующим рилизинг-фактор этих тропинов (гонадолиберин). Если самке пересадить гипофиз самца, то пересаженный гипофиз начинает функционировать циклично. Половая дифференцировка гипоталамуса происходит под действием андрогенов. Если самца лишить половых желез, продуцирующих андрогены, то гипоталамус будет дифференцироваться по женскому типу.

В железах внутренней секреции иннервированы, как правило, только сосуды, а эндокринные клетки изменяют свою биосинтетическую и секреторную активность лишь под действием метаболитов, кофакторов и гормонов, причем не только гипофизарных. Так, ангиотензин II стимулирует синтез и секрецию альдостерона. Отметим также, что некоторые гормоны гипоталамуса и гипофиза могут образовываться не только в этих тканях. Например, соматостатин (гормон гипоталамуса, ингибирующий образование и секрецию гормона роста) обнаружен также в поджелудочной железе, где он подавляет секрецию инсулина и глюкагона.

Большинство нервных и гуморальных путей регуляции сходится на уровне гипоталамуса и благодаря этому в организме образуется единая нейроэндокринная регуляторная система. К клеткам гипоталамуса подходят аксоны нейронов, расположенных в коре больших полушарий и подкорковых образованиях. Эти аксоны секретируют различные нейромедиаторы, оказывающие на секреторную активность гипоталамуса как активирующее, так и тормозное влияние. Поступающие из мозга нервные импульсы гипоталамус «превращает» в эндокринные стимулы, которые могут быть усилены или ослаблены в зависимости от гуморальных сигналов, поступающих в гипоталамус от желез и тканей, подчиненных ему.

Тропины, образующиеся в гипофизе, не только регулируют деятельность подчиненных желез, но и выполняют самостоятельные эндокринные функции. Например, пролактин оказывает лактогенное действие, а также тормозит процессы дифференцировки клеток, повышает чувствительность половых желез к гонадотропинам, стимулирует родительский инстинкт. Кортикотропин является не только стимулятором стероцдогенеза, но и активатором липолиза в жировой ткани, а также важнейшим участником процесса превращения в мозге кратковременной памяти в долговременную. Гормон роста может стимулировать активность иммунной системы, обмен липидов, сахаров и т. д.

В задней доле гипофиза (нейрогипофиз) депонируются антидиуретический гормон (вазопрессин) и окситоцин (см. рис. 2). Первый вызывает задержку воды в организме и повышает тонус сосудов, второй стимулирует сокращение матки при родах и секрецию молока. Оба гормона синтезируются в гипоталамусе, затем транспортируются по аксонам в заднюю долю гипофиза, где депонируются и потом секретируются в кровь.

Характер процессов, протекающих в ЦНС, во многом определяется состоянием эндокринной регуляции. Так, андрогены и эстрогены формируют половой инстинкт, многие поведенческие реакции. Очевидно, что нейроны, точно так же как и другие клетки нашего организма, находятся под контролем гуморальной системы регуляции. Нервная система, эволюционно более поздняя, имеет как управляющие, так и подчиненные связи с эндокринной системой. Эти две регуляторные системы дополняют друг друга, образуют функционально единый механизм, что обеспечивает высокую эффективность нейрогуморальной регуляции, ставит ее во главе систем, согласующих все процессы жизнедеятельности в многоклеточном организме.

Гормоны гипоталамуса

К настоящему времени в гипоталамусе открыто 7 стимуляторов и 3 ингибитора секреции гормонов гипофиза, а именно: кортиколиберин, тиролиберин, люлиберин, фоллилиберин, соматолиберин,пролактолиберин, меланолиберин, соматостатин, пролактостатин и меланостатин. В чистом виде выделено 5 гормонов, для которых установлена первичная структура, подтвержденная химическим синтезом.

Большие трудности при получении гормонов гипоталамуса в чистом виде объясняются чрезвычайно низким содержанием их в исходной ткани.

По химическому строению все гормоны гипоталамуса являются низкомолекулярными пептидами, так называемыми олигопептидами необычного строения, хотя точный аминокислотный состав и первичная структура выяснены не для всех. Приводим полученные к настоящему времени данные о химической природе шести из известных 10 гормонов гипоталамуса.

1. Тиролиберин (Пиро-Глу–Гис–Про–Nh3):

Тиролиберин представлен трипептидом, состоящим из пироглутаминовой (циклической) кислоты, гистидина и пролинамида, соединенных пептидными связями. В отличие от классических пептидов он не содержит свободных Nh3- и СООН-групп у N- и С-концевых аминокислот.

Обеспечивает высвобождение тиротропного гормона (ТТГ) из передней доли гипофиза.

2. Гонадолиберин является декапептидом, состоящим из 10 аминокислот последовательности: Пиро-Глу–Гис–Трп–Сер–Тир–Гли–Лей–Арг–Про–Гли-NН2Концевая С-аминокислота представлена глицинамидом.

Обеспечивает высвобождение ФСГ, ЛГ и пролактина

3. Соматостатин является циклическим тетрадекапептидом (состоит из 14 аминокислотных остатков) :

Отличается этот гормон от двух предыдущих, помимо циклической структуры, тем, что не содержит на N-конце пироглутаминовой кислоты: дисульфидная связь образуется между двумя остатками цистеина в 3-м и 14-м положениях. Следует отметить, что синтетический линейный аналог соматостатина также наделен аналогичной биологической активностью, что свидетельствует о несущественности дисульфидного мостика природного гормона. Помимо гипоталамуса, соматостатин продуцируется нейронами центральной и периферической нервных систем, а также синтезируется в S-клетках панкреатических островков (островков Лангерганса) в поджелудочной железе и клетках кишечника. Он оказывает широкий спектр биологического действия; в частности, показано ингибирующее действие на синтез гормона роста в аденогипофизе, а также прямое тормозящее действие его на биосинтез инсулина и глюкагона в β- и α-клетках островков Лангерганса.

4. Соматолиберин. Он представлен 44 аминокислотными остатками с полностью раскрытой последовательностью. Биологической активностью соматолиберина наделен, кроме того, химически синтезированный декапептид:

Н-Вал–Гис–Лей–Сер–Ала–Глу–Глн–Лиз–Глу–Ала-ОН.

Этот декапептид стимулирует синтез и секрецию гормона роста гипофиза соматотропина.

5. Меланолиберин, химическая структура которого аналогична структуре открытого кольца гормона окситоцина (без трипептидной боковой цепи), имеет следующее строение:

Н-Цис–Тир–Иле–Глн–Асн–Цис-ОН.

6. Меланостатин (меланотропинингибирующий фактор) представленили трипептидом: Пиро-Глу–Лей–Гли-NН 2 , или пентапептидом со следующей последовательностью:

Пиро-Глу–Гис–Фен–Aрг–Гли–NН2.

Необходимо отметить, что меланолиберин оказывает стимулирующее действие, а меланостатин, напротив, ингибирующее действие на синтез и секрецию меланотропина в передней доле гипофиза.


Смотрите также