Функции костной ткани


Глава 14 Функции костной ткани

Глава 14. Функции костной ткани

Костная ткань обладает несколькими функциями. Прежде всего это опорная функция, обеспечивающая фиксацию внутренних орга­нов, а также связок и мышц (опорно-двигательный аппарат). За счет опорной функции кости скелет выдерживает не только вес тела, но и большие нагрузки. Представляя собой подвижно соеди­ненные в суставах рычаги различной длины, кости обеспечивают перемещение тела в пространстве за счет сократительной деятель­ности мышц. Защитная функция костной ткани наиболее наглядно проявляется по отношению к центральной нервной системе (голов­ному и спинному мозгу) и костному мозгу, одетых сплошными костными чехлами. Обе указанные функции костной ткани могут быть названы механическими и их реализация связана с особеннос­тями строения основных типов ткани — губчатой или трабекулярной и плотной или пластинчатой. Так, трабекулярная костная ткань, благодаря своему губчатому строению на концах длинных костей, гасит сотрясения, передаваемые через суставы, способна изгибаться и возвращаться к начальной форме. Пластинчатая плотная кость значительно более устойчива к изгибам и скручиванию. Помимо опорной и защитной, костная ткань выполняет в организме и дру­гие функции: резервуарно-депонирующую и метаболическую, уча­ствует в защите внутренней среды от хронического ацидоза, явля­ется ловушкой для попадающих в организм тяжелых металлов и радиоактивных изотопов, участвует в гистогенезе кроветворной тка­ни.

Кость — это непрестанно обновляемая ткань, в которой отдель­ные участки постоянно разрушаются, а на их месте образуются новые. В течение 10 лет у взрослого человека практически обнов­ляется вся костная ткань (физиологическая регенерация). Следова­тельно, в костной ткани непрерывно сосуществуют два основных процесса: резорбция и формирование ткани. Эти процессы связаны с деятельностью клеток костной ткани: остеобластов, остеоцитов и остеокластов.

Костная ткань состоит из органического матрикса или остеоида, на долю которого приходится около 35% массы, и минерального компонента (65%). Функционально - структурной единицей компакт­ной кости является остеон, представляющий собой концентрически расположенные пластинки вокруг гаверсова канала, в котором про­ходят кровеносные сосуды. В губчатой кости трабекулы находятся в полостях, включающих костный мозг, и окружены многочисленными кровеносными капиллярами. Органический матрикс синтезируется

545

остеобластами, обладающими высокой синтетической деятельностью и секретирующими коллаген и протеогликаны, фосфолипиды и щелочную фосфатазу, необходимые для минерализации кости. При формировании кости остеобласты окружаются по периферии мине­рализованными участками ткани и превращаются в остеоциты, глав­ной функцией которых является поддержание обмена веществ уже минерализованных костных участков. Третий тип клеток — остео­класты — располагается по поверхности кости в особых углублени­ях или нишах резорбции, образуемых за счет деятельности этих клеток. Остеокласты путем экзоцитоза выделяют Н-ионы, растворя­ющие минералы кости, секретируют лизосомальные ферменты (гид­ролазы и коллагеназы), разрушающие костный матрикс.

В надкостнице находится популяция стволовых остеогенных кле­ток, сохраняющих способность к пролиферации на протяжении всей жизни. За счет этих клеток происходит образование новых слоев костной ткани снаружи (в периосте), при одновременной резорбции костной ткани изнутри (эндоосте). Так растет кость в ширину, при этом костномозговой канал расширяется, а толщина стенки трубча­той кости практически не меняется. В процессе роста костей в длину важную роль играет хрящевая ткань эпифазарных концов, образующая зоны роста за счет способных к пролиферации хондро-цитов.

Для роста костной ткани важное значение имеют особенности кровообращения. Это связано с несколькими механизмами. Во-пер­вых, кровоток обеспечивает обмен кальция и фосфора между кровью и костной тканью, необходимый для постоянного обновления кости. Во-вторых, кровоток приносит в костную ткань органические суб­страты метаболизма и, прежде всего, глюкозу, высокое потребление которой костной тканью обусловлено низким содержанием в при­текающей крови кислорода и гликолитическим путем получения энергии. Глюкоза используется также для синтеза гликогена, необ­ходимого для процессов минерализации растущей кости. В-третьих, поступающая в кость кровь имеет высокое напряжение углекислого газа, что является одним из факторов, способствующих костеобра-зованию. В-четвертых, кровоток создает в растущей костной ткани электрохимический потенциал, способствующий преципитации солей и образованию очагов кальцификации.

Повышение кровотока активизирует рост костей в длину. В ус­ловиях механических нагрузок кровоток возрастает, что стимулирует рост кости. Механические нагрузки повышают процессы костеобра-зования и благодаря пьезоэлектрическому эффекту — генерирова­нию потенциалов в местах контакта кристаллов минерального веще­ства кости гидроксиаппатита с органическим веществом — коллаге­ном. Возникающие электрические потенциалы способствуют движе­нию ионов и молекул по питающим костную ткань каналам. Пре­кращение механических нагрузок обычно ведет к атрофии кости от бездеятельности. Это связано с нарушениями кровообращения, электрохимических потенциалов и преобладанием процессов деструк­ции над процессами образования костной ткани. Одной из новых

546

разновидностей этого явления стала потеря кальция костной тканью в условиях невесомости при космических полетах. Напротив, при постоянных избыточных нагрузках формируется рабочая гипертрофия кости.

Регуляция роста костей осуществляется гормонами — соматотро-пином, гормонами щитовидной и половых желез, а также сомато-мединами или инсулиноподобными факторами роста (ИПФ), один из которых образуется в печени под влиянием соматотропина (ИПФ-1), а другой — (ИПФ-2) — самими хондроцитами хрящевой зоны роста (рис.14.1). При этом соматотропин способствует образованию чувствительных к ИПФ- 1 хондроцитов из клеток предшественников, а в дальнейшем, под влиянием ИПФ-1 происходит пролиферация хондроцитов и образование гипертрофированных клеток, уже спо­собных к оссификации (рис. 14.2). Рост и дифференцировку остеоб­ластов стимулирует и гормон кальцитриол, основная функция кото­рого заключается в регуляции процессов минерализации.

Наряду с постоянной физиологической регенерацией, костная ткань обладает способностью к сепаративной регенерации, т.е. вос­становлению структуры и функции после повреждения (перелома). Репаративная регенерация реализуется теми же элементами костной ткани, которые обеспечивают рост и обновление костной структуры — хондроцитами и стволовыми остеогенными клетками надкостни­цы, соединительнотканными клетками межбалочных пространств губ­чатого вещества и сосудистых каналов остеонов, остеобластами. Остеоциты в регенерации не участвуют. Остеокласты стимулируют регенерацию гуморальными факторами.

Раньше всего в процесс регенерации включаются клетки надкост­ницы, образующие быстро растущую хрящевую ткань, что обеспе­чивает формирование периостальной (наружной) костной мозоли, способствующей фиксации костных отломков и их обездвиживанию. Регенерация также происходит со стороны костномозговой полости, приводя к образованию эндостальной костной мозоли. Последняя играет большую роль при переломах эпифизарных частей трубчатых костей, состоящих из губчатой ткани с малым числом ростовых клеток надкостницы. В подобных случаях мозоль образуется из клеток межбалочных пространств.

Состояние покоя в области перелома облегчает процесс форми­рования костной мозоли в межотломковой щели (интермедиарная мозоль), завершающей сращение перелома. Кровеносные сосуды прорастают в щель перелома вместе с остеогенной тканью, как со стороны надкостницы, так и из эндооста. Образовавшаяся костная мозоль с помощью остеобластов постепенно перестраивается, при­обретая типичное для костной ткани трабекулярное или остеонное строение. Регенерация кости не является лишь местным процессом, а сопровождается общими изменениями минерального и белкового обмена, функций эндокринных желез и других физиологических процессов в организме.

Минерализация кости, т.е. отложение неорганических веществ в ранее образованный органический матрикс, осуществляется с учас-

547

Рис. 14.1. Схема гормональной регуляции роста костей в длину. СТЛ — соматолиберин, СТС — соматостатин, ИПФ-2 — инсулиноподобный фактор роста хрящевого происхождения, (+) — активация, (-) — ингибирование; штриховая стрелка — реализация инсулиноподобных эффектов.

тием коллагена как каркаса. При этом минеральные кристаллывключаются внутрь коллагеновых фибрилл и скрепляются с ними с помощью протеогликанов. Основным минеральным соединением фосфата кальция в кости является гидрокеиаппатит, образующий микрокристаллы с огромной суммарной поверхностью — до 100 га. Сильное электростатическое поле кристалла удерживает вокруг него гидратную оболочку, играющую основную роль в обмене ионами

548

Рис.14.2. Прямой и опосредованный эффекты соматотропина (СТГ).

ИПФ-1 — инсупиноподобный фактор роста.

между кристаллами и внеклеточной жидкостью. В микрокристаллыкроме кальция и фосфора включаются и другие ионы — карбонат, нитрат, натрий, калий, магний, фтор, свинец, стронций и т.п.

Процесс минерализации кости состоит в образовании остеоблас­тами или хондробластами мембранных везикул, отпочковывающихся во внеклеточное пространство. В везикулах содержится много фос-фолипидов и щелочная фосфатаза. Везикулы захватывают и накап­ливают кальций и фосфор, после чего первично образуется фосфат кальция, преобразуемый затем в гидроксиаппатит с участием щелоч­ной фосфатазы. Благодаря наличию в везикулах фосфолипидов, начинается непрерывный рост кристаллов оксиаппатита, продолжа­ющийся и после разрыва пузырька. Щелочная фосфатаза взаимо-

549

действует с коллагеном, структура которого способствует упорядочи­ванию пролиферации кристаллов.

Процессы минерализации и деминерализации кости обеспечивают гомеостазис кальция и фосфора в организме и регулируются тремя кальцийрегулирующими гормонами — паратирином, кальцитонином и кальцитриолом (см.главу 5).

Содержание в костной ткани больших количеств кальция и фос­фора, а также непрерывность сопряженных процессов образования и разрушения ткани позволяют говорить о том, что костная ткань выполняет резсрвуарно-депонирующую функцию по отношению к этим ионам. Действительно, 99% из почти 2 кг содержащегося в организме кальция и 87% всего фосфора находится в костной ткани и может быть легко мобилизовано из нее в кровь. Таким образом, содержание кальция в крови, а следовательно его уникальная фи­зиологическая роль в регуляции жизнедеятельности многочисленных клеток, зависят от особенностей постоянно происходящего обмена кальция между кровью и костной тканью. Кальций и фосфор яв­ляются для организма настолько необходимыми элементами, что резервуарно-депонирующую функцию можно даже считать основной функцией костной ткани.

Резервуарно-депонирующую функцию кость выполняет не только в отношении кальция и фосфора, но и для других макро- и микро­элементов. Так, в костной ткани содержится 50% всего магния и 46% всего натрия организма. Все элементы, избирательно накапли­вающиеся в костной ткани, можно разделить на две группы — 1) участвующие в ионном обмене, равномерно распределенные в ми­неральной фазе кости (Са, Sr, Ba, Ra, P, F, Nb, Mg, Na) и 2) поступающие путем коллоидной адсорбции, скапливающиеся в эн-доосте, периосте и плохо проникающие в минеральное вещество (Y, La, Zr, Th, Ac.

Способность костной ткани при образовании микрокристаллов минерального вещества заменять в кристаллической решетке окси-аппатита ионы кальция на другие, так называемые остеотропные микроэлементы, лежит в основе функции кости как ловушки для попадающих в организм ионов. Это проявляется не только в отно­шении свинца, обычно конкурирующего с кальцием в биологических субстратах, но и радиоактивных элементов, прежде всего стронция-90. Связывание и концентрирование стронция в костной ткани является, с одной стороны, защитным процессом, так как изотоп элиминируется из внутренней среды. Но с другой стороны, накоп­ление в костной ткани радиоактивного элемента ведет к прицель­ному облучению костного мозга, наиболее чувствительной ткани к действию ионизирующей радиации. Поскольку образующиеся при построении участка костной ткани минеральные кристаллы сохраня­ются до момента разрушения этого участка при обновлении кости, постольку радиоактивные элементы, включенные в минеральное ве­щество костной ткани, сохраняются в нем очень долгое время.

Костная ткань играет определенную роль и в поддержании кис­лотно-основного состояния внутренней среды. Являясь мощным

550

резервуаром катионов, костная ткань способна связывать слабые кислоты при длительных сдвигах рН в кислую сторону и снижении буферных оснований внутренней среды, основную роль при этом играют ионы натрия костной ткани. Паратирин, приводящий к деминерализации костной ткани, одновременно мобилизует и нат­рий, пополняющий резерв буферных оснований крови.

Чрезвычайно важную роль играет костная ткань в обеспечении кроветворения. Являясь основной частью микроокружения гемопо-этической ткани костного мозга, костная ткань образует стромаль-ный плацдарм, на котором осуществляется дифференцировка крове­творных клеток (глава 6). Помимо биофизического взаимодействия костной и кроветворной ткани, связи между ними осуществляются с помощью местных гуморальных факторов, стимулирующих как костеобразованне, так и гемопоэз.

Функции костной ткани

Костная ткань обладает несколькими функциями.

Опорная функция обеспечивает фиксацию внутренних орга­нов, а также связок и мышц (опорно-двигательный аппарат). За счет опорной функции кости скелет выдерживает не только вес тела, но и большие нагрузки.

Представляя собой подвижно соеди­ненные в суставах рычаги различной длины, кости обеспечивают перемещение тела в пространстве за счет сократительной деятель­ности мышц.

Защитная функция костной ткани наиболее наглядно проявляется по отношению к центральной нервной системе (голов­ному и спинному мозгу) и костному мозгу, одетых сплошными костными чехлами. Обе указанные функции костной ткани могут быть названы механическими и их реализация связана с особеннос­тями строения основных типов ткани — губчатой или трабекулярной и плотной или пластинчатой. Так, трабекулярная костная ткань, благодаря своему губчатому строению на концах длинных костей, гасит сотрясения, передаваемые через суставы, способна изгибаться и возвращаться к начальной форме. Пластинчатая плотная кость значительно более устойчива к изгибам и скручиванию.

Содержание в костной ткани больших количеств кальция и фос­фора, а также непрерывность сопряженных процессов образования и разрушения ткани позволяют говорить о том, что костная ткань выполняет резсрвуарно-депонирующую функцию по отношению к этим ионам. Действительно, 99% из почти 2 кг содержащегося в организме кальция и 87% всего фосфора находится в костной ткани и может быть легко мобилизовано из нее в кровь. Таким образом, содержание кальция в крови, а следовательно его уникальная физиологическая роль в регуляции жизнедеятельности многочисленных клеток, зависят от особенностей постоянно происходящего обмена кальция между кровью и костной тканью. Кальций и фосфор яв­ляются для организма настолько необходимыми элементами, что резервуарно-депонирующую функцию можно даже считать основной функцией костной ткани.

Резервуарно-депонирующую функцию кость выполняет не только в отношении кальция и фосфора, но и для других макро- и микро­элементов. Так, в костной ткани содержится 50% всего магния и 46% всего натрия организма. Все элементы, избирательно накапли­вающиеся в костной ткани, можно разделить на две группы —

1) участвующие в ионном обмене, равномерно распределенные в ми­неральной фазе кости (Са, Sr, Ba, Ra, P, F, Nb, Mg, Na)

2) поступающие путем коллоидной адсорбции, скапливающиеся в эндоосте, периосте и плохо проникающие в минеральное вещество (Y, La,  Zr,  Th,  Ac.)

Способность костной ткани при образовании микрокристаллов минерального вещества заменять в кристаллической решетке оксиаппатита ионы кальция на другие, так называемые остеотропные микроэлементы, лежит в основе функции кости как ловушки для попадающих в организм ионов. Это проявляется не только в отно­шении свинца, обычно конкурирующего с кальцием в биологических субстратах, но и радиоактивных элементов, прежде всего стронция-90. Связывание и концентрирование стронция в костной ткани является, с одной стороны, защитным процессом, так как изотоп элиминируется из внутренней среды. Но с другой стороны, накоп­ление в костной ткани радиоактивного элемента ведет к прицель­ному облучению костного мозга, наиболее чувствительной ткани к действию ионизирующей радиации. Поскольку образующиеся при построении участка костной ткани минеральные кристаллы сохраня­ются до момента разрушения этого участка при обновлении кости, постольку радиоактивные элементы, включенные в минеральное ве­щество костной ткани,  сохраняются в нем очень долгое  время.

Костная ткань играет определенную роль и в поддержании кислотно-основного состояния внутренней среды. Являясь мощным резервуаром катионов, костная ткань способна связывать слабые кислоты при длительных сдвигах рН в кислую сторону и снижении буферных оснований внутренней среды, основную роль при этом играют ионы натрия костной ткани. Паратирин, приводящий к деминерализации костной ткани, одновременно мобилизует и нат­рий,  пополняющий резерв буферных оснований крови.

Костная ткань участвует в гистогенезе кроветворной тка­ни и играет чрезвычайно важную роль  в обеспечении кроветворения. Являясь основной частью микроокружения гемопо-этической ткани костного мозга, костная ткань образует стромальный плацдарм, на котором осуществляется дифференцировка кроветворных клеток (глава 6). Помимо биофизического взаимодействия костной и кроветворной ткани, связи между ними осуществляются с помощью местных гуморальных факторов, стимулирующих как костеобразованне, так и гемопоэз.

Функция костной ткани

Глава 14. Функции костной ткани

Костная ткань обладает несколькими функциями. Прежде всего это опорная функция, обеспечивающая фиксацию внутренних орга­нов, а также связок и мышц (опорно-двигательный аппарат). За счет опорной функции кости скелет выдерживает не только вес тела, но и большие нагрузки. Представляя собой подвижно соеди­ненные в суставах рычаги различной длины, кости обеспечивают перемещение тела в пространстве за счет сократительной деятель­ности мышц. Защитная функция костной ткани наиболее наглядно проявляется по отношению к центральной нервной системе (голов­ному и спинному мозгу) и костному мозгу, одетых сплошными костными чехлами. Обе указанные функции костной ткани могут быть названы механическими и их реализация связана с особеннос­тями строения основных типов ткани — губчатой или трабекулярной и плотной или пластинчатой. Так, трабекулярная костная ткань, благодаря своему губчатому строению на концах длинных костей, гасит сотрясения, передаваемые через суставы, способна изгибаться и возвращаться к начальной форме. Пластинчатая плотная кость значительно более устойчива к изгибам и скручиванию. Помимо опорной и защитной, костная ткань выполняет в организме и дру­гие функции: резервуарно-депонирующую и метаболическую, уча­ствует в защите внутренней среды от хронического ацидоза, явля­ется ловушкой для попадающих в организм тяжелых металлов и радиоактивных изотопов, участвует в гистогенезе кроветворной тка­ни.

Кость — это непрестанно обновляемая ткань, в которой отдель­ные участки постоянно разрушаются, а на их месте образуются новые. В течение 10 лет у взрослого человека практически обнов­ляется вся костная ткань (физиологическая регенерация). Следова­тельно, в костной ткани непрерывно сосуществуют два основных процесса: резорбция и формирование ткани. Эти процессы связаны с деятельностью клеток костной ткани: остеобластов, остеоцитов и остеокластов.

Костная ткань состоит из органического матрикса или остеоида, на долю которого приходится около 35% массы, и минерального компонента (65%). Функционально — структурной единицей компакт­ной кости является остеон, представляющий собой концентрически расположенные пластинки вокруг гаверсова канала, в котором про­ходят кровеносные сосуды. В губчатой кости трабекулы находятся в полостях, включающих костный мозг, и окружены многочисленными кровеносными капиллярами. Органический матрикс синтезируется

545

остеобластами, обладающими высокой синтетической деятельностью и секретирующими коллаген и протеогликаны, фосфолипиды и щелочную фосфатазу, необходимые для минерализации кости. При формировании кости остеобласты окружаются по периферии мине­рализованными участками ткани и превращаются в остеоциты, глав­ной функцией которых является поддержание обмена веществ уже минерализованных костных участков. Третий тип клеток — остео­класты — располагается по поверхности кости в особых углублени­ях или нишах резорбции, образуемых за счет деятельности этих клеток. Остеокласты путем экзоцитоза выделяют Н-ионы, растворя­ющие минералы кости, секретируют лизосомальные ферменты (гид­ролазы и коллагеназы), разрушающие костный матрикс.

В надкостнице находится популяция стволовых остеогенных кле­ток, сохраняющих способность к пролиферации на протяжении всей жизни. За счет этих клеток происходит образование новых слоев костной ткани снаружи (в периосте), при одновременной резорбции костной ткани изнутри (эндоосте). Так растет кость в ширину, при этом костномозговой канал расширяется, а толщина стенки трубча­той кости практически не меняется. В процессе роста костей в длину важную роль играет хрящевая ткань эпифазарных концов, образующая зоны роста за счет способных к пролиферации хондро-цитов.

Для роста костной ткани важное значение имеют особенности кровообращения. Это связано с несколькими механизмами. Во-пер­вых, кровоток обеспечивает обмен кальция и фосфора между кровью и костной тканью, необходимый для постоянного обновления кости. Во-вторых, кровоток приносит в костную ткань органические суб­страты метаболизма и, прежде всего, глюкозу, высокое потребление которой костной тканью обусловлено низким содержанием в при­текающей крови кислорода и гликолитическим путем получения энергии. Глюкоза используется также для синтеза гликогена, необ­ходимого для процессов минерализации растущей кости. В-третьих, поступающая в кость кровь имеет высокое напряжение углекислого газа, что является одним из факторов, способствующих костеобра-зованию. В-четвертых, кровоток создает в растущей костной ткани электрохимический потенциал, способствующий преципитации солей и образованию очагов кальцификации.

Повышение кровотока активизирует рост костей в длину. В ус­ловиях механических нагрузок кровоток возрастает, что стимулирует рост кости. Механические нагрузки повышают процессы костеобра-зования и благодаря пьезоэлектрическому эффекту — генерирова­нию потенциалов в местах контакта кристаллов минерального веще­ства кости гидроксиаппатита с органическим веществом — коллаге­ном. Возникающие электрические потенциалы способствуют движе­нию ионов и молекул по питающим костную ткань каналам. Пре­кращение механических нагрузок обычно ведет к атрофии кости от бездеятельности. Это связано с нарушениями кровообращения, электрохимических потенциалов и преобладанием процессов деструк­ции над процессами образования костной ткани. Одной из новых

546

разновидностей этого явления стала потеря кальция костной тканью в условиях невесомости при космических полетах. Напротив, при постоянных избыточных нагрузках формируется рабочая гипертрофия кости.

Регуляция роста костей осуществляется гормонами — соматотро-пином, гормонами щитовидной и половых желез, а также сомато-мединами или инсулиноподобными факторами роста (ИПФ), один из которых образуется в печени под влиянием соматотропина (ИПФ-1), а другой — (ИПФ-2) — самими хондроцитами хрящевой зоны роста (рис.14.1). При этом соматотропин способствует образованию чувствительных к ИПФ- 1 хондроцитов из клеток предшественников, а в дальнейшем, под влиянием ИПФ-1 происходит пролиферация хондроцитов и образование гипертрофированных клеток, уже спо­собных к оссификации (рис. 14.2). Рост и дифференцировку остеоб­ластов стимулирует и гормон кальцитриол, основная функция кото­рого заключается в регуляции процессов минерализации.

Наряду с постоянной физиологической регенерацией, костная ткань обладает способностью к сепаративной регенерации, т.е. вос­становлению структуры и функции после повреждения (перелома). Репаративная регенерация реализуется теми же элементами костной ткани, которые обеспечивают рост и обновление костной структуры — хондроцитами и стволовыми остеогенными клетками надкостни­цы, соединительнотканными клетками межбалочных пространств губ­чатого вещества и сосудистых каналов остеонов, остеобластами. Остеоциты в регенерации не участвуют. Остеокласты стимулируют регенерацию гуморальными факторами.

Раньше всего в процесс регенерации включаются клетки надкост­ницы, образующие быстро растущую хрящевую ткань, что обеспе­чивает формирование периостальной (наружной) костной мозоли, способствующей фиксации костных отломков и их обездвиживанию. Регенерация также происходит со стороны костномозговой полости, приводя к образованию эндостальной костной мозоли. Последняя играет большую роль при переломах эпифизарных частей трубчатых костей, состоящих из губчатой ткани с малым числом ростовых клеток надкостницы. В подобных случаях мозоль образуется из клеток межбалочных пространств.

Состояние покоя в области перелома облегчает процесс форми­рования костной мозоли в межотломковой щели (интермедиарная мозоль), завершающей сращение перелома. Кровеносные сосуды прорастают в щель перелома вместе с остеогенной тканью, как со стороны надкостницы, так и из эндооста. Образовавшаяся костная мозоль с помощью остеобластов постепенно перестраивается, при­обретая типичное для костной ткани трабекулярное или остеонное строение. Регенерация кости не является лишь местным процессом, а сопровождается общими изменениями минерального и белкового обмена, функций эндокринных желез и других физиологических процессов в организме.

Минерализация кости, т.е. отложение неорганических веществ в ранее образованный органический матрикс, осуществляется с учас-

547

Рис. 14.1. Схема гормональной регуляции роста костей в длину. СТЛ — соматолиберин, СТС — соматостатин, ИПФ-2 — инсулиноподобный фактор роста хрящевого происхождения, (+) — активация, (-) — ингибирование; штриховая стрелка — реализация инсулиноподобных эффектов.

тием коллагена как каркаса. При этом минеральные кристаллывключаются внутрь коллагеновых фибрилл и скрепляются с ними с помощью протеогликанов. Основным минеральным соединением фосфата кальция в кости является гидрокеиаппатит, образующий микрокристаллы с огромной суммарной поверхностью — до 100 га. Сильное электростатическое поле кристалла удерживает вокруг него гидратную оболочку, играющую основную роль в обмене ионами

548

Рис.14.2. Прямой и опосредованный эффекты соматотропина (СТГ).

ИПФ-1 — инсупиноподобный фактор роста.

между кристаллами и внеклеточной жидкостью. В микрокристаллыкроме кальция и фосфора включаются и другие ионы — карбонат, нитрат, натрий, калий, магний, фтор, свинец, стронций и т.п.

Процесс минерализации кости состоит в образовании остеоблас­тами или хондробластами мембранных везикул, отпочковывающихся во внеклеточное пространство. В везикулах содержится много фос-фолипидов и щелочная фосфатаза. Везикулы захватывают и накап­ливают кальций и фосфор, после чего первично образуется фосфат кальция, преобразуемый затем в гидроксиаппатит с участием щелоч­ной фосфатазы. Благодаря наличию в везикулах фосфолипидов, начинается непрерывный рост кристаллов оксиаппатита, продолжа­ющийся и после разрыва пузырька. Щелочная фосфатаза взаимо-

549

действует с коллагеном, структура которого способствует упорядочи­ванию пролиферации кристаллов.

Процессы минерализации и деминерализации кости обеспечивают гомеостазис кальция и фосфора в организме и регулируются тремя кальцийрегулирующими гормонами — паратирином, кальцитонином и кальцитриолом (см.главу 5).

Содержание в костной ткани больших количеств кальция и фос­фора, а также непрерывность сопряженных процессов образования и разрушения ткани позволяют говорить о том, что костная ткань выполняет резсрвуарно-депонирующую функцию по отношению к этим ионам. Действительно, 99% из почти 2 кг содержащегося в организме кальция и 87% всего фосфора находится в костной ткани и может быть легко мобилизовано из нее в кровь. Таким образом, содержание кальция в крови, а следовательно его уникальная фи­зиологическая роль в регуляции жизнедеятельности многочисленных клеток, зависят от особенностей постоянно происходящего обмена кальция между кровью и костной тканью. Кальций и фосфор яв­ляются для организма настолько необходимыми элементами, что резервуарно-депонирующую функцию можно даже считать основной функцией костной ткани.

Резервуарно-депонирующую функцию кость выполняет не только в отношении кальция и фосфора, но и для других макро- и микро­элементов. Так, в костной ткани содержится 50% всего магния и 46% всего натрия организма. Все элементы, избирательно накапли­вающиеся в костной ткани, можно разделить на две группы — 1) участвующие в ионном обмене, равномерно распределенные в ми­неральной фазе кости (Са, Sr, Ba, Ra, P, F, Nb, Mg, Na) и 2) поступающие путем коллоидной адсорбции, скапливающиеся в эн-доосте, периосте и плохо проникающие в минеральное вещество (Y, La, Zr, Th, Ac.

Способность костной ткани при образовании микрокристаллов минерального вещества заменять в кристаллической решетке окси-аппатита ионы кальция на другие, так называемые остеотропные микроэлементы, лежит в основе функции кости как ловушки для попадающих в организм ионов. Это проявляется не только в отно­шении свинца, обычно конкурирующего с кальцием в биологических субстратах, но и радиоактивных элементов, прежде всего стронция-90. Связывание и концентрирование стронция в костной ткани является, с одной стороны, защитным процессом, так как изотоп элиминируется из внутренней среды. Но с другой стороны, накоп­ление в костной ткани радиоактивного элемента ведет к прицель­ному облучению костного мозга, наиболее чувствительной ткани к действию ионизирующей радиации. Поскольку образующиеся при построении участка костной ткани минеральные кристаллы сохраня­ются до момента разрушения этого участка при обновлении кости, постольку радиоактивные элементы, включенные в минеральное ве­щество костной ткани, сохраняются в нем очень долгое время.

Костная ткань играет определенную роль и в поддержании кис­лотно-основного состояния внутренней среды. Являясь мощным

550

резервуаром катионов, костная ткань способна связывать слабые кислоты при длительных сдвигах рН в кислую сторону и снижении буферных оснований внутренней среды, основную роль при этом играют ионы натрия костной ткани. Паратирин, приводящий к деминерализации костной ткани, одновременно мобилизует и нат­рий, пополняющий резерв буферных оснований крови.

Чрезвычайно важную роль играет костная ткань в обеспечении кроветворения. Являясь основной частью микроокружения гемопо-этической ткани костного мозга, костная ткань образует стромаль-ный плацдарм, на котором осуществляется дифференцировка крове­творных клеток (глава 6). Помимо биофизического взаимодействия костной и кроветворной ткани, связи между ними осуществляются с помощью местных гуморальных факторов, стимулирующих как костеобразованне, так и гемопоэз.

Функции костной соединительной ткани

В состав скелета любого взрослого человека входит 206 различных костей, все они различны по строению и роли. На первый взгляд они кажутся твердыми, негибкими и безжизненными. Но это ошибочное впечатление, в них непрерывно происходят различные обменные процессы, разрушение и регенерация. Они, в совокупности с мышцами и связками, образуют особую систему, что носит название «костно-мышечная ткань», основная функция которой — опорно-двигательная. Она образована из нескольких видов особых клеток, которые различаются по структуре, функциональным особенностям и значению. О костных клетках, их строение и функциях далее и пойдет речь.

Строение костной ткани

Это отдельный вид соединительной ткани, из нее образуются все кости в человеческом теле. В ее состав входят особые клетки и межклеточное вещество. Последнее включает органический матрикс, состоящий из коллагеновых волокон (90-95% от общей массы) и минеральных компонентов, в основном солей кальция (5-10%). Благодаря такому составу костная ткань человека имеет гармоничное сочетание твердости и эластичности. Различают три группы клеток: остеокласты (слева), остеобласты (посередине), остеоциты (справа на фото).

Более подробно остановимся на них далее. Коллаген, содержащийся в матриксе, имеет отличия от своих аналогов, находящихся в других тканях, главным образом за счет того, что содержит больше специфических полипептидов. Волокна расположены, как правило, параллельно уровню наиболее вероятных нагрузок на кость. Именно благодаря нему сохраняется эластичность и упругость.

Если кость подвергнуть действию соляной кислоты, то минеральные вещества будут растворены, а вот органические (оссеин) останутся. Они сохранят форму, но станут чрезмерно гибкими и сильно подверженными деформированию. Такое состояние характерно для маленьких детей. У них высоко содержание оссеина, поэтому кости более эластичны, чем у взрослых. И обратный случай, когда теряются органические вещества, но остаются минеральные. Это происходит, если, к примеру, кость обжечь: она сохранит свою форму, но приобретет вместе с тем сильную хрупкость и может разрушиться даже от незначительного прикосновения. Такие изменения состав костной ткани претерпевает в старости. Доля минеральных солей доходит до 80% от всей массы. Поэтому пожилые люди более подвержены различного рода переломам и травмам.

Если установить плотность костной ткани (объем), то это позволит оценить прочность скелета и его отдельных частей. Такие исследования проводятся с использованием компьютерной томографии. Своевременная диагностика позволяет начать лечение или поддерживающую терапию вовремя.

Остеобласты (активные): особенности строения

Остеобласты – это клетки костной ткани, располагающиеся в верхних ее слоях, имеющие многоугольную, кубическую форму с различного вида отростками. Внутреннее содержимое мало чем отличается от других. Хорошо развитый зернистый эндоплазматический ретикуллум содержит различные элементы, рибосомы, аппарат Гольджи, округлой или овальной формы ядро богатое хроматином и содержащее ядрышко. Снаружи эти клетки костной ткани окружены тончайшими микрофибриллами.

Главная функция остеобластов – синтез компонентов межклеточного вещества. Это коллаген (преимущественно первого типа), гликопротеины матрикса (остеокальцин, остеонектин, остеопонтин, костный сиалопротеин), протеогликаны (бигликан, гиалуроновая кислота, декорин), а также различные костные морфогенетические белки, факторы роста, ферменты, фосфопротеины. Нарушение выработки всех этих соединений остеобластами наблюдается при некоторых заболеваниях. Например, недостаток витамина С (цинга) у детей характеризуется нарушением развития и роста костей вследствие дефекта синтеза коллагена и гликозаминогликанов. По этой же причине и замедляется восстановление костной ткани, заживление при переломах. Так как остеобласты фактически отвечают за рост, то присутствуют исключительно в развивающейся костной ткани.

Механизм минерализации остеобластами органического матрикса

Существует два способа:

  1. Отложение кристаллов гидроксилата вдоль фибрилл коллагена из перенасыщенной внеклеточной жидкости. Особую роль при этом отводят некоторым протеогликанам, которые связывают кальций и удерживают его в зонах зазоров.
  2. Секреция особых матричных пузырьков. Это мелкие мембранные структуры, которые синтезируются и выделяются остеобластами. В них в большой концентрации содержится фосфат кальция и щелочная фосфатаза. Особая микросреда, создаваемая внутри пузырьков, благоприятствует образованию первых гидроксиапатитовых кристаллов.

Скорость минерализации остеоида (костная ткань на стадии формирования) может существенно меняться, в норме она занимает около 15 суток. Нарушения могут происходить при снижении концентрации ионов кальция в крови или фосфата. Результатом этого является размягчение и деформация костей – остеомаляция. Аналогичные нарушения наблюдаются, например, при рахите (дефицит витамина D).

Неактивные (покоящиеся) остеобласты

Они образуются из активных остеобластов, у нерастущей кости покрывают около 80-95% ее поверхности. Они имеют уплощенную форму с веретеновидным ядром. Остальные органеллы редуцированы. Но сохраняются рецепторы, реагирующие на различные гормоны и факторы роста. Между покоящимися остеобластами и остеоцитами сохраняется связь и таким образом образуется система, регулирующая минеральный обмен. Если происходит какое-либо повреждение (травмы, переломы), то они активизируются, и начинается активный синтез коллагена, выработка органического матрикса. Другими словами, за счет их происходит регенерация костных тканей. В то же время они могут быть причиной злокачественной опухоли – остеосаркомы.

Остеоциты: строение и функции

Эти клетки составляют основу зрелой костной ткани. Форма у них веретенообразная, с множеством отростков. Органелл значительно меньше по сравнению с остеобластами, есть округлое ядро (в нем преобладает гетеохроматин) с ядрышком. Остеоциты располагаются в лакунах, но непосредственно с матриксом не соприкасаются, а окружены тонким слоем костной жидкости. За счет нее осуществляется питание клеток.

Аналогично отделены и их отростки, имеющие достаточно большую длину до 50 мкм, располагающиеся в специальных канальцах. Их очень много, костная ткань буквально пронизана ими, они образуют ее дренажную систему, в которой и содержится тканевая жидкость. Через нее осуществляется обмен веществ между межклеточным веществом и клетками. Также стоит отметить, что они не делятся, а образуются из остеобластов и являются основными компонентами в сформировавшейся костной ткани.

Основная функция остеоцитов – поддержание нормального состояния костного матрикса и баланса кальция и фосфора в организме. Они способны воспринимать механические напряжения, и чувствительны к электрическим потенциалам, возникающим при действии деформирующих сил. Реагируя на них, они запускают локальный процесс, при котором соединительная костная ткань начинает перестраиваться.

Остеокласты

Такое название получили крупные клетки, содержащие от 5 до 100 ядер, имеющие моноцитарное происхождение, разрушающие кости и хрящи или, по-другому, вызывающие их резорбцию. В цитоплазме остеокластов содержится много митохондрий, элементов ЭПС (зернистой) и аппарат Гольджи, рибосомы, а также различные по функции лизосомы. В ядрах содержится большое количество хроматина и есть хорошо различимые ядрышки. Также имеется достаточное количество цитоплазматических отростков, больше всего их располагается на поверхности, прилегающей к разрушаемой кости. Они увеличивают площадь соприкосновения с ней. Костная ткань начинает разрушаться при повышении уровня особого гормона (паратиреоидного), который приводит к активации остеокластов. Механизм этого процесса связывают с выделением ими углекислого газа, который под воздействием специального фермента (карбоангидраза) превращается в кислоту, имеющую название угольная, она и растворяет соли кальция.

Механизм резорбции костной ткани

Стоит отметить, что процесс разрушения протекает циклически, и периоды высокой активности каждой клетки неизменно сменяются периодами покоя. Резорбция протекает в несколько этапов:

  1. Прикрепление остеокласта к разрушаемой поверхности кости, при этом наблюдается выраженная перестройка его цитоскелета.
  2. Окисление содержимого лакун. Это происходит либо путем выделения в них содержимого вакуолей, имеющего кислую среду, либо в результате действия протонных насосов.
  3. Разрушение минерального компонента матрикса.
  4. Растворение органических соединений в результате действия ферментов, секретируемых остеокластами в лакуну и активированными кислой средой.
  5. Выведение продуктов разрушения костной ткани.

Регуляция деятельности остеокластов определяется общими и местными факторами. К первым, например, относятся паратгормон, витамин D, они стимулируют активность. А угнетающими являются кальцитонин и эстрогены. К местным относится такой фактор, как создание электрического локального поля при механическом напряжении, к которому эти клетки очень чувствительны.

Строение грубоволокнистой костной ткани

Второе ее название — ретикулофиброзная. Она формируется у зародыша, как будущая основа костей. У взрослого же человека ее присутствие минимально, она сохраняется в швах черепа после того, как они зарастают и в зонах, где сухожилия прикрепляются к костям, а также в участках остеогенеза, например, при заживлении различного рода переломов. Строение костной ткани этого вида специфическое. Коллагеновые волокна собраны в плотные пучки, которые расположены неупорядоченно, имеют между собой «перекладины». Она обладает низкой механической прочностью, содержание остеоцитов значительно выше по сравнению с пластинчатой разновидностью. В патологических условиях наращивание костной ткани этого типа происходит при переломе кости или при болезни Педжета.

Особенности пластинчатой костной ткани

Она образована костными пластинками, имеющими толщину 4-15 мкм. Они, в свою очередь, состоят их трех компонентов: остеоцитов, основного вещества и коллагеновых тонких волокон. Из этой ткани образованы все кости взрослого человека. Волокна коллагена первого типа лежат параллельно относительно друг друга и ориентированы в определенном направлении, у соседних же костных пластинок они направлены в противоположную сторону и перекрещиваются практически под прямым углом. Между ними находятся тела остеоцитов в лакунах. Такое строение костной ткани обеспечивает ей наибольшую прочность.

Губчатое вещество кости

Встречается также название «трабекулярное вещество». Если проводить аналогию, то структура сравнима с обычной губкой, построенной из костных пластинок с ячейками между ними. Расположены они упорядоченно, в соответствии с распределенной функциональной нагрузкой. Из губчатого вещества в основном построены эпифизы длинных костей, часть смешанных и плоских и все короткие. Видно, что в основном это легкие и в то же время прочные части скелета человека, которые испытывают нагрузку в различных направлениях. Функции костной ткани находятся в прямой взаимосвязи с ее строением, которое в данном случае обеспечивает большую площадь для метаболических процессов, осуществляемых на ней, придает высокую прочность в совокупности с небольшой массой.

Плотное (компактное) вещество кости: что это?

Из компактного вещества состоят диафизы трубчатых костей, кроме того, оно тонкой пластинкой покрывает их эпифизы снаружи. Его пронизывают узкие каналы, через них проходят нервные волокна и кровеносные сосуды. Некоторые из них располагаются параллельно костной поверхности (центральные или гаверсовы). Другие выходят на поверхность кости (питательные отверстия), через них внутрь проникают артерии и нервы, а наружу — вены. Центральный канал, в совокупности с окружающими его костными пластинками, образует так называемую гаверсову систему (остеон). Это основное содержимое компактного вещества и их рассматривают как его морфофункциональную единицу.

Остеон – структурная единица костной ткани

Второе его название — гаверсова система. Это совокупность костных пластинок, имеющих вид цилиндров вставленных друг в друга, пространство между ними заполняют остеоциты. В центре располагается гаверсов канал, через него проходят обеспечивающие обмен веществ в костных клетках кровеносные сосуды. Между соседними структурными единицами есть вставочные (интерстициальные) пластинки. По сути, они являются остатками остеонов, существовавших ранее и разрушившихся в тот момент, когда костная ткань претерпевала перестройку. Также существуют еще генеральные и окружающие пластинки, они образуют самый внутренний и наружный слой компактного вещества кости соответственно.

Надкостница: строение и значение

Исходя из названия, можно определить, что она покрывает кости снаружи. Прикрепляется она к ним с помощью коллагеновых волокон, собранных в толстые пучки, которые проникают и сплетаются с наружным слоем костных пластинок. Имеет два выраженных слоя:

  • наружный (его образует плотная волокнистая, неоформленная соединительная ткань, в ней преобладают волокна, располагающиеся параллельно к поверхности кости);
  • внутренний слой хорошо выражен у детей и менее заметен у взрослых (образован рыхлой волокнистой соединительной тканью, в которой есть веретенообразные плоские клетки – неактивные остеобласты и их предшественники).

Надкостница выполняет несколько важных функций. Во-первых, трофическую, то есть обеспечивает кость питанием, поскольку на поверхности содержит сосуды, которые проникают внутрь вместе с нервами через специальные питательные отверстия. Эти каналы питают костный мозг. Во-вторых, регенераторную. Она объясняется наличием остеогенных клеток, которые при стимуляции трансформируются в активные остеобласты, вырабатывающие матрикс и вызывающие наращивание костной ткани, обеспечивающие ее регенерацию. В-третьих, механическую или опорную функцию. То есть обеспечение механической связи кости с другими прикрепляющимися к ней структурами (сухожилиями, мышцами и связками).

Функции костной ткани

Среди основных функций можно перечислить следующие:

  1. Двигательная, опорная (биомеханическая).
  2. Защитная. Кости оберегают от повреждений головной мозг, сосуды и нервы, внутренние органы и т. д.
  3. Кроветворная: в костном мозге происходит гемо — и лимфопоэз.
  4. Метаболическая функция (участие в обмене веществ).
  5. Репараторная и регенераторная, заключающиеся в восстановлении и регенерации костной ткани.
  6. Морфобразующая роль.
  7. Костная ткань – это своеобразное депо минеральных веществ и ростовых факторов.


Смотрите также