Мрт принцип работы


Разбираем магнитно-резонансный томограф

Квантовая физика, математика, биология, криогеника, химия и электроника сплелись единым узором, чтобы воплотиться в железе и показать настоящий внутренний мир человека, и даже, ни много ни мало, прочитать его мысли. Электроника таких аппаратов, по надежности и сложности может сравниться разве что с космической. Эта статья посвящается оборудованию и принципам работы магнитно-резонансных томографов. В области современного томографостроения лидируют мастодонты электронного мира: Siemens, General Electric, Philips, Hitachi. Только такие крупные компании могут позволить себе разработку столь сложного оборудования, стоимость которого как правило составляет десятки (почти сотни) миллионов рублей. Разумеется, ремонт такой дорогущей техники у официального представителя влетает в огромную копеечку владельцу аппарата (а они к слову в основном частные, а не государственные). Но не стоит отчаиваться! Также как и сервис-центры по ремонту ноутбуков, телефонов, чпу-станков, да собственно любой электроники существуют фирмы, занимающиеся ремонтом медицинского оборудования. В одной из таких фирм я и работаю, поэтому продемонстрирую вам интересную электронику и постараюсь описать ее функционал понятными словами.

Магнитно-резонансный томограф фирмы GE Healthcare с полем 1.5 Тесла. Стол отсоединяется от томографа и может быть использован как обычная каталка. Вся магия МРТ начинается с квантовой физики, откуда берет свое начало термин «спин», применяемый к элементарным частицам. Можно встретить кучу определений, что такое спин, общепринято — это момент количества движения частицы, что бы это не значило. В моем понимании частицы как-бы постоянно вращаются (упрощенно) создавая при этом возмущения в магнитном поле. Так как элементарные частицы в свою очередь образуют ядра атомов, считается, что их спины при этом складываются и ядро обладает собственным спином. При этом, если мы хотим как-то взаимодействовать с ядрами атомов с помощью магнитного поля, нам будет очень важно, чтобы спин ядра был ненулевой. Совпадение или нет, но самый распространенный в нашей вселенной элемент — водород имеет ядро в виде одного единственного протона, который имеет спин равный 1/2. КстатиСпин может принимать только определенные значения, как целые например 0,1,2, так и полуцелые, вроде 1/2 как у протона. Для незнакомых с квантовой физикой это кажется противоестественным, но на квантовом уровне все делится на порции, и становится в некотором роде дискретным. А это означает, что упрощенно, ядра водорода можно рассматривать как очень маленькие магниты, имеющие северный и южный полюс. И стоит ли упоминать, что в теле человека атомов водорода просто море (около 10^27), но так как мы не притягиваем к себе железки, становится очевидно, что все эти маленькое «магниты» уравновешиваются между собой и остальными частицами, и общий магнитный момент тела практически равен нулю. Иллюстрация из книги Эверта Блинка «Основы МРТ». Протоны с черными стрелками, символизирующими стрелку компаса вращаются в направлении синей стрелки. Приложив внешнее магнитное поле, можно вывести эту систему из равновесия и протоны (не все конечно) поменяют свою пространственную ориентацию в соответствии с направлением силовых линий поля. Иллюстрация из книги Lars G. Hanson Introduction to Magnetic Resonance Imaging Techniques. Спины протонов в теле человека показаны в виде векторов-стрелочек. Слева отражена ситуация когда все протоны находятся в магнитном равновесии. Справа — когда приложено внешнее магнитное поле. Нижние визуализации показывают тоже самое в трехмерном варианте, если построить все векторы из одной точки. При всем этом, происходит вращение (прецессия) вокруг силовых линий магнитного поля, которая показана круглой красной стрелкой. Прежде чем протоны сориентируются в соответствии с внешним полем, они будут какое-то время колебаться (прецессировать) около положения равновесия, как и стрелка компаса, что колебалась бы возле отметки «север», если бы производитель предусмотрительно не добавил бы демпфирующую жидкость внутрь циферблата. Примечательно, что частота таких колебаний различается для разных атомов. На измерении этой частоты например, основаны методы резонансного определения состава исследуемого вещества. КстатиЧастота эта не безымянная и носит имя ирландского физика Джозефа Лармора, называется соответственно Ларморовой частотой. Зависит от величины приложенного магнитного поля и специальной константы — гиромагнитного соотношения, которая зависит от типа вещества. Для ядер атомов водорода в поле величиной 1 Тесла эта частота составляет 42,58 МГц, ну или простыми словами, колебания протонов вокруг силовых линия поля такой напряженности происходят около 42 миллионов раз в секунду. Если мы облучим протоны радиоволной с соответствующей частотой, то возникнет резонанс, и колебания усилятся, вектор общей намагниченности при этом сместится на определенный градус относительно линий внешнего поля. Иллюстрация из книги Lars G. Hanson Introduction to Magnetic Resonance Imaging Techniques. Показано как смещается общий вектор намагниченности, после воздействия радиоволны с частотой, которая вызывает резонанс в системе. Не забываем, что все это продолжает вращаться относительно силовой линии магнитного поля (на рисунке она расположена вертикально). Тут и начинается самое интересное — после взаимодействия радиоволны с протонами и резонансного усиления колебаний, частицы снова стремятся придти к равновесному состоянию, при этом, излучая фотоны (из которых и состоит радиоволна). Это и называется эффектом ядерного магнитного резонанса. По сути, все исследуемое тело превращается в огромный массив миниатюрных радиопередатчиков, сигнал с которых можно поймать, локализовать и построить картину распределения атомов водорода в веществе. Так что, как вы уже догадались, по сути МРТ показывает картину распределения воды в организме. Чем сильнее напряженность поля, тем большее число протонов можно использовать для получения сигналов, поэтому разрешающая способность сканера напрямую зависит от этого. Сей эффект проявляется не только в сильных магнитных полях — каждый день, даже по пути в магазин за хлебом, протоны нашего тела испытывают влияние магнитного поля Земли. Исследователи из Словении например, построили экспериментальную систему МРТ, использующую лишь магнитное поле нашей планеты.

Иллюстрация из научной статьи «Magnetic Resonance Imaging System Based on Earth’s Magnetic Field» Авторы: Ales Mohoric, Gorazd Planins и др. Демонстрирует снимки, полученные с использованием экспериментальной системы. Слева яблоко, справа — апельсин. Показательно не то, что получаются снимки с плохим качеством, а сама принципиальная возможность использования МР в слабых полях. Разумеется, в коммерческих медицинских сканерах, напряженность магнитного поля многократно выше земного. Наиболее часто используют сканеры с полем 1, 1.5 и 3 Тесла, хотя есть как более слабые (0.2, 0.35 Тесла), так и суровые монстры в 7 и даже 10 тесла. Последние используют в основном для исследовательской деятельности, и в нашей стране насколько мне известно, таких нет. Конструктивно поле в сканере может создаваться по разному — это и постоянные магниты, и электромагниты, и погруженные в кипящий гелий сверхпроводники по которым текут огромные токи. Последние широко распространены, и представляют наибольший интерес, так как позволяют добиться несравненно большей напряженности поля по сравнению с другими вариантами.

Типичная конструкция аппарата МРТ, поле в котором создается током, текущим через сверхпроводники. Источник — интернет. Температура сверхпроводящих обмоток поддерживается благодаря постепенному испарению хладагента — жидкого гелия, кроме того в системе работает криокулер, на жаргоне медтехников называемый «холодной головой». Он издает характерные чавкающие звуки, которые вы наверняка слышали если хоть раз видели аппарат вблизи. Ток в сверхпроводниках течет постоянно, а не только во время работы аппарата, соответственно магнитное поле есть всегда. На незнании этого факта часто попадаются киношники (например в последнем сезоне сериала «Черное зеркало» был подобный ляп). На панели управления аппаратов такого типа есть большая красная кнопка, позволяющая отключить магнитное поле (Rundown magnet). Она не без иронии называется «Кнопка увольнения».

Одна из панелей управления томографом фирмы Siemens Нажатие этой кнопки включает аварийные нагреватели в емкости с хладагентом, которые поднимают температуру обмоток до критической точки, после которой процесс идет лавинообразно: после приобретения обмотками сопротивления, ток через них моментально разогревает их и все вокруг, приводя к выбросу гелия через специальную трубу. Этот процесс называется «квенч», и это наверное самое грустное, что может случится с аппаратом, так как восстановление его работоспособности после такого занимает очень много времени и денег.

Томограф Siemens Espree, с полем 1.5. Тесла, обратите внимание на металлические ключи, которые спокойно лежат на столе — магнитного поля тут больше нет. Был закуплен для некоторых государственных клиник у компании Siemens. Имеет сравнительно малые размеры емкости и большой диаметр апертуры. Есть мнение, что подобное укорочение конструкции вылилось в то, что он любит часто пускать гелий на ветер сам по себе (по крайней мере аппарат на фото делает это с завидной регулярностью).

Тем временем после небольшого отступления, снова вернемся к теории. Если просто принимать радиоволны испускаемые протонами тела в ответ на резонансные радиоимпульсы, картинку не построить не выйдет. Как же локализовать сигнал, который идет сразу со всех частей тела? В свое время исследователи Пол Лотербур и Питер Мэнсфилд получили за решение этой проблемы нобелевскую премию по медицине. Если вкратце, их решение состоит в применении дополнительных обмоток в аппарате, создающих практически линейное изменение напряженности магнитного поля вдоль выбранного направления — градиент поля. Так как наше пространство вроде как трехмерное, то и обмоток используется три — оси X, Y и Z.

Иллюстрация из книги Эверта Блинка «Основы МРТ». Примерно так выглядят дополнительные градиентные обмотки внутри аппарата — реальные обмотки имеют конечно более сложную структуру. Если напряженность магнитного поля изменяется по линейному закону, то при активации одного из градиентов протоны вдоль этого направления будут иметь различную резонансную частоту.

Иллюстрация с сайта howequipmentworks.com. Символически нарисованы градиентные обмотки (синим) и радиочастотная обмотка (зеленым). Показано что при создании градиента поля вдоль стола в точке А резонансная частота протонов будет отличатся от частоты в точке B Использование градиентов позволяет манипулировать полем так, чтобы сигнал приходил только из конкретно определенных областей. В зависимости от амплитуды полученного сигнала выбирается яркость пикселя на картинке. Чем больше концентрация протонов в области — тем ярче результат. Конечно...Такое описание конечно сильно утрировано. Реально же сигнал локализуется комбинированием сразу всех трех градиентов, причем картинка строится не пиксель за пикселем, как можно подумать из этого описания, а сразу целой строкой. Не последнюю роль в этом играет и известное преобразование Фурье. Подробное описание можно прочитать в книге «Introduction to Magnetic Resonance Imaging Techniques» Lars G. Hanson. Данная статья увы все не вместит. Чтобы создать градиент магнитного поля, нужно пропустить через градиентные обмотки большой ток, причем импульс должен быть довольно кратковременным, и с крутым фронтом, а для некоторых программ и вовсе требуется, чтобы направление тока в градиентной обмотке мгновенно менялось на противоположное для перемагничивания. Этим занимаются мощные импульсные преобразователи, они занимают целую стойку в аппаратной.

Градиентные усилители аппарата Siemens Harmony 1T. Рабочие характеристики — до 300 Ампер и до 800 Вольт, при использовании шести модулей — на фото представлено три модуля. В аппаратах Siemens традиционно используется водяное охлаждение силовых компонентов — трубки видно на фото. Это нередко выливается (интересный каламбур) в хороший салют при любой течи. Несмотря на хваленое немецкое качество, никто не озаботился установкой датчиков протечки ( в этом плане им стоило бы поучиться у GE). Но справедливости ради, конкретно градиентные блоки текут редко, чаще они выходят из строя без видимой причины.

Внутренности градиентного модуля от Siemens Harmony старого типа. Модуль вроде тех, что показан на фото тяжело поддается ремонту — транзисторы приклеены к медной трубке на что-то вроде холодной сварки, и горят они там сразу десятками. Чтобы снять плату, требуется отпаять одновременно несколько десятков ножек! Лучше забудем этот кошмар, и посмотрим на более свежее решение от немецкого производителя.

Градиентный усилитель от Siemens Harmony. Более новая версия. Две симметричные платы прикручиваются болтами к очень мощным полевым транзисторам. Транзисторы работают группами по шесть штук параллельно, горят конечно тоже не по одному. Модель на фото уже слегка «отколхожена», вместо родных разъемов между платами впаяны медные пластины. Обратите внимание на верхний правый угол фото — это оптические кабели по которым идет сигнал на открытие ключей. Если перепутать их подключение — блок тут же сгорает с громким хлопком, никакой защиты «от дурака» в такой технике не предусмотрено. Одной из главных проблем при ремонте является отсутствие какой-либо документации, тем более, оборудование весьма специализированное. Поэтому порой приходится набить немало шишек и пожечь довольно много недешевых компонентов, чтобы понять что же было не так. Конечно, за деньги можно купить и сервисные мануалы, но как правило, они весьма поверхностные. Крутые фирмы надежно хранят свои секреты. Чем сильнее магнитное поле в аппарате, тем соответственно более мощными должны быть и градиентные преобразователи. В аппаратах с полем 1.5 Т и 3 Т куча параллельных полевых транзисторов, которые нужно набрать для обеспечения необходимой мощности, становится чересчур огромной, в дело вступают IGBT сборки, подобные тем, что ставят в промышленные преобразователи частоты для управления двигателями.

Градиентный усилитель Quantum Cascade в разборе, ток до 500 Ампер, выходное напряжение до 2000 В. В его составе работают 20 мощных IGBT сборок. Здесь есть интересный момент — сама по себе сборка не выдержит 2 киловольта, это напряжение получается путем использования пяти независимых источников по 400В каждый. Моя мечта — собрать из этого агрегата катушку Тесла. Что же творится с градиентными обмотками, когда по ним текут такие чудовищные токи, с учетом того что они еще и находятся в неслабом магнитном поле? Сила Ампера разумеется заставляет их деформироваться, но они накрепко залиты смолой по самое немогу. Тем не менее, даже это не спасает — так как градиенты работают в диапазоне звуковых частот, то возникающие при этом вибрации могут порождать довольно громкие звуки, по громкости напоминающие удар молотком по гвоздю (с той оговоркой, что вы слышали как стучат молотком около 5000 ударов в секунду). Поэтому практически в любом аппарате МРТ есть наушники, либо беруши. Софт и аппаратура постоянно контролируют уровень звука в помещении сканера, чтобы децибелы не выходили за допустимые пределы. Быстро изменяющееся при работе градиентов магнитное поле, вкупе с порождающими резонанс радиочастотными импульсами наводит вихревые токи в любой металлической поверхности рядом со сканером, что приводит к вибрации металла и небольшому нагреву, а на снимках даже от маленькой металлической пломбы появятся характерные артефакты. Именно по этой причине перед обследованием в МРТ требуют избавиться от всего металла (пломбы снимать не надо). За создание радиочастотных импульсов нужной частоты отвечает блок синтезатора (в аппаратах Siemens) или же эксайтер (в случае аппаратов GE). Несмотря на разные названия, их функции примерно одинаковы. Эти блоки как правило надежны и редко требуют ремонта, если с ними аккуратно обращаться. Сигнал формируется путем цифро-аналогового синтеза, и представляет собой sinc-функцию.

Слева продемонстрированы два вида радиочастотных импульсов — гауссиан и sinc, он же так называемый кардинальный синус. Справа показан профиль возбуждения при их использовании в качестве радиочастотного возбуждающего сигнала — то есть примерно показана форма области, где протоны войдут в резонанс, вид сбоку. Разумеется нижняя версия более предпочтительна для создания изображений (слайсов), особенно когда они расположены близко друг к другу, чтобы уменьшить влияние сигналов за пределами выбранной области сканирования. Наконец, мы подошли без преувеличения, к самому интересному по моему мнению блоку во всем томографе — радиочастотный усилитель мощности, который преобразует слабый сигнал с синтезатора в мощный, подаваемый на передающую антенну в аппарате. Еще кстатиВ иностранной литературе все антенны, относящиеся к томографу зовуться «Coil», по-русски прижилось название «катушка». Вы вряд ли где-либо еще услышите слово «антенна» применительно к МРТ. Body coil — или «Боди-катушка» на местном диалекте — основная приемо-передающая антенна томографа, но кроме нее есть и другие, но о них — далее. Мощность усилителя для томографа с полем 1Т составляет 10кВт, для поля 1.5Т уже 15 кВт, соответственно для более высокопольных аппаратов требуются большие мощности в плане радиочастотного излучения. Это одна из причин, почему высокопольные аппараты еще прочно не вошли в клиническую практику. Но давайте без фанатизма — постоянно разговаривая по мобильнику вы пооблучаетесь побольше чем за один сеанс в аппарате МРТ. Как правило этот блок совмещает в себе сложные запутанные схемы управления и защиты, радиочастотные фишки, большие напряжения, а также проблемы с охлаждением. В томографах General Electric и Hitachi ставят усилители мощности, изготавливаемые фирмой Analogic. Отличаются красивой компоновкой компонентов на плате, высокой живучестью — как правило в их усилителях несколько транзисторных каскадов работают параллельно, причем выходной сумматор устроен так, что при отказе одного каскада усиления, блок продолжит работать, хоть и не на полную мощность.

Плата усилителя из аппарата GE. Красивая и эффектная конструкция!Блок целиком В аппарате с полем в 1.5Т стоят два таких красавца, по 8 кВт каждый. Верхняя девятислойная (!) плата — это хитрый импульсный блок питания, а сам усилитель размещен на нижней плате. К нам он попал по причине неисправности верхней платы. За отсутствием времени на разбирательства со схемой, успешно хакнули и собрали из двух серверных блоков питания замену. Кроме того путем подбора более крутых по характеристикам транзисторов смогли добиться усиления большего чем было изначально. Усилитель мощности с томографа Hitachi Этот малыш работает в системе с магнитным полем в 0.35Т, тем не менее легко угадывается похожесть на технику из GE — производитель один. К сожалению, не могу сказать того же про продукцию Siemens. Очевидно, что перед инженерами, проектировавшими устройство радиочастотного усилителя поставили задачу во чтобы то ни стало использовать производимый компанией дешевый транзистор Buz103. Это хилый компонент в плане допустимой для него мощности, и чтобы выкрутится из положения, в итоговую конструкцию усилителя с красивым именем «Dora» вставили 177 транзисторов, все они стоят на двух огромных радиаторах, которые при работе находятся под высоким напряжением и контактируют через термопрокладку с радиатором водяного охлаждения, а тот уже в свою очередь постоянно течет, причем прямо на плату, что на фото далее.

Плата усилителя Siemens усилителя мощности 10кВт. Сплошные электротехнические понты: индуктивности из дорожек, идущие через несколько слоев, сложнейшая схема управления транзисторами на 10-слойной плате, резонаторы из полигонов и прочие малоприятные вещи. Ремонтопригодность усилителя этой фирмы практически никакая. Имея в своем распоряжении производство транзисторов Siemens может позволить себе собрать близкие по параметрам детали из партии, путем отбора, а это очень критично когда параллельно работает сразу сотня транзисторов. И самое обидное, что даже если купить нужное количество на замену, то выяснится что то, что находятся в продаже оказывается не тем чем кажется.

Вскрытие транзисторов — снаружи все подписаны и выглядят одинаково, внутри — все разные. Оригинал — крайний справа. Те, что с меньшей площадью кристалла чем у оригинала — горят как спички, второй справа хоть и имеет близкую площадь, но отвратительно работает в режиме усиления. Вероятно у кого нибудь может возникнуть вопрос, почему в описанных усилителях применяют транзисторы, а как же лампы? Действительно, в старых агрегатах фирмы Siemens, а также во вполне современных аппаратах Philips с полем в 3Т применяют именно лампы. Увы, фото данного железа у меня нет, но могу сказать что срок службы у этих элементов составляет всего год-два, а цена у них немалая. Вообще, как то в статье обделил вниманием Philips, нехорошо вышло. Исправлюсь немного:

МРТ нового типа — Philips Panorama. Как правило аппараты открытого типа основаны на постоянных либо электромагнитах, что автоматом означает низкое поле и качество картинки. Но не в этом случае. Поле этого аппарата 1 Тесла, и здесь также применяется сверхпроводник. Огромное по сравнению с обычным томографом пространство позволяет проводить исследование крупных пациентов, либо тех кто боится замкнутого пространства, например детей. Мощность радиочастотного сигнала контролируется в самом блоке усилителя мощности, в измерительном блоке, осуществляющем подстройку передающей антенны (катушки) и еще в приемнике. Таким образом, аппарат МРТ имеет троекратную защиту от превышения допустимых норм радиоизлучения. Так что не бойтесь, и смело проходите обследование. Несмотря на всю мощь усилителей, описанную выше, сигнал, получаемый в ответ на резонансное возбуждение довольно мал. Поэтому передающую антенну (Body coil), описанную ранее и находящуюся в корпусе томографа редко используют в режиме приема сигнала. Вместо этого, существует большой набор катушек (coils) для любых частей тела — голова, спина, колено, плечи и.т.п. Они находятся гораздо ближе к объекту исследования и позволяют добиться лучшего качества изображения. Но я думаю вы уже устали от кучи информации, поэтому я просто засуну в томограф арбуз.

Арбуз готовится к исследованию. На нем сверху лежит катушка, предназначенная для грудной области, под ним — катушка для спинного отдела и позвоночника. Справа на полу — шар для предсказаний специальный объект для калибровки систем аппарата, так называемый «фантом»

Мало кто режет арбузы в поперечном направлении. Аппарат МРТ позволяет сделать это без ножа. Знали ли вы об интересной фрактальной структуре внутри? Обратите внимание, что верхняя часть, которая ближе к приемным элементам катушки светлее, так как амплитуда сигнала, получаемого из этой области выше, чем снизу ягоды.

Продольный разрез уже знаком всем. Думаю, арбуз спелый, можно брать. Сигнал с катушек поступает в блок приемника в виде аналоговых сигналов, где перерабатываются в цифровую форму. В новейшем оборудовании на острие прогресса, приемник с аналогово-цифровым преобразователем встроен прямо внутрь катушки, а к компьютеру идет оптическая линия передачи данных. Это сделано для того чтобы максимально убрать помехи. Компьютер, занимающийся построением изображения из этих данных обычно стоит отдельно и называется реконструктором. Полученные изображения печатают на пленку, которая кстати хорошо подходит для фоторезиста.

В заключение еще хотел добавить, что в России прямо сейчас проводят интересные исследования по улучшению качества изображения в аппаратах МРТ. Этим занимается кафедра нанофотоники и метаматериалов университета ИТМО. Если простыми словами — метаматериалы это композиты, имеющие специальную структуру. Они позволяют создавать антенны и резонаторы, с очень малыми размерами по сравнению с длинной волны излучения, что идеально подходит для магнитно-резонансной томографии.

Теги:
  • МРТ
  • MRI
  • томография
  • медицинское оборудование
  • железо
  • резонанс
  • geektimes-торт.

Мрт аппарат принцип работы

Метод МРТ (магнитно-резонансная томография), в настоящее время является единственным методом лучевой медицинской диагностики, имеющий уникальные возможности получения всех данных об организме пациента, с высокоточными сведениями о метаболизме, анатомии и физиологии тканей и органов.

Оглавление:

В период обследования на аппарате МРТ, создается серия снимков органов и тканей человека в различной проекции, которые после оценки и обработки медицинским специалистом дают возможность сделать достаточно точный вывод.

Принцип работы МРТ

МРТ – это способ получения послойного изображения тканей и органов человеческого организма при помощи феномена ЯМР (магнитно-ядерный резонанс).

Магнитно-ядерный резонанс, считается физическим явлением, основанным на свойствах протонов (атомных ядер). В электромагнитном поле, с помощью радиочастотного импульса, происходит излучение энергии в виде сигнала, который в дальнейшем регистрируется и преобразуется в компьютерной системе.

Метод ЯМР позволяет изучать человеческий организм благодаря насыщенности водородом тканей организма и особенностям их магнитных свойств. На основе векторного направления параметров протона, обычно имеющие две фазы расположенные противоположно, и их привязанности к магнитному моменту, можно установить, в какой проекции находится определенный атом водорода.

Если в магнитное внешнее поле поместить протон, то магнитный момент (спин), будет иметь противоположное направление к магнитному моменту поля. При воздействии электромагнитным излучением, имеющим определенную частоту, на исследуемый участок организма, часть протонов меняют свое месторасположение, но вскоре возвращаются в исходное положение. В данный период компьютерная система сбора данных томографа, проводит регистрацию “расслабившихся” ранее возбужденных протонов.

Подготовка к МРТ

Следует подчеркнуть, что магнитное поле аппарата МРТ, сильнее земного магнитного поля враз. В связи с этим, при проведении диагностики соблюдаются все требования безопасности и строго учитываются противопоказания.

Обследование требует заполнение анкеты, где указывают краткую информацию о себе, состоянии здоровья и возможные ограничения.

Перед процедурой на аппарате МРТ, с себя снимают предметы одежды, которые содержат металл. Причем, в некоторых видах декоративных косметических средствах (например, тушь), содержатся примеси металлов, что определенно помешает созданию точной и правильной картины исследования. Поэтому косметика перед процедурой тщательно удаляется.

Технология проведения МРТ

В специальной комнате для исследования пациент располагается внутри трубы МРТ. Участок диагностики определяет врач назначивший процедуру.

Время исследования – примерно двадцать минут. В данном периоде пациент должен находиться неподвижно, от чего будет зависеть качество снимков.

За пациентом врач наблюдает через специальное окошко или при помощи видеокамеры. При необходимости, нажатием кнопки можно подать сигнал и поговорить с врачом через переговорное устройство.

Существуют случаи, когда для получения точного результата, внутривенным способом вводится контрастное вещество. Побочные эффекты в данной процедуре отсутствуют.

В течение тридцати минут пациент получает готовое заключение и снимки.

В настоящее время практически каждому человеку известно о пользе диагностики заболеваний с помощью рентгенографии и компьютерной томографии. Порой без них невозможно вылечить человека, то есть установить точный диагноз.

Источник: http://sibclinics.ru/princip-mrt

Принцип работы аппарата МРТ

Один из самых эффективных методов медицинского исследования – МРТ или магнитно-резонансная томография, позволяющая получить максимально точные сведения об анатомических особенностях организма пациента, обменных процессах, физиологии тканей и внутренних органов. С его появлением стало возможно детальное обследование головного мозга для диагностики заболеваний и дегенеративных поражений. Возможность определения локализации процесса и объема произошедших повреждений становится основным преимуществом данной процедуры при выявлении новообразований и исследовании сосудов.

Что такое МРТ

Магнитно-резонансная томография – это уникальная возможность получения высокоточных послойных изображений исследуемой области. Процедура проводится при помощи специального аппарат, действие которого на организм человека заключается в стимуляции радиоволн, создании сильного магнитного поля и регистрации ответного электромагнитного излучения организма. Результатом процесса становится построение изображения путем обработки поступающего сигнала на компьютере.

В основе работы аппарата лежит принцип ЯМР с последующей обработкой полученных сведений специальными программами. МРТ установка обеспечивает создание сильного магнитного поля. Немаловажным фактором, объясняющим принцип работы устройства, является наличие в человеческом организме протонов (в химическом смысле это ядро атома водорода) . Магнитно-резонансный томограф позволяет поддерживать стабильное состояние магнетизма в теле пациента, при помещении его в силовое поле. Аппарат производит:

стимуляцию организма при помощи радиоволн, способствуя смене стационарной ориентации заряженных частиц;

остановку радиоволн и регистрацию электромагнитных излучений организма;

обработку полученного сигнала и преобразование его в изображение.

Полученная картинка не является фотографическим снимком обследуемого отдела или органа. Специалист получает высококачественное детализированное отображение радиосигналов, испускаемых телом пациента. МРТ диагностика полностью превосходит метод компьютерной томографии, поскольку в данном случае при проведении процедуры не применяется ионизирующее излучение, а используются безопасные для человеческого организма электромагнитные волны.

История создания и принцип работы МРТ

Годом создания данного метода считается 1973, а одним из отцов-основателей магнитно-резонансной томографии – Пол Лотербур. В одном из журналов им была опубликована статья, в которой подробно описывался феномен визуализации структур и органов при помощи использования магнитных и радиоволн.

Это не единственный ученый, причастный к открытию МРТ – еще в 1946 году Феликс Блох и Ричард Пурселл, работающие в Гарварде, изучали физическое явление, в основе которого лежали свойства, присущие атомным ядрам (первичное поглощение получаемой энергии и последующее ее переизлучение. т.е. выделение с переходом к начальному состоянию). За это исследование ученые получили Нобелевскую премию (1952).

Открытие Блоха и Пурселла стало своеобразным толчком к развитию теории по ЯМР. Необычное явление изучалось как химиками, так и физиками. Демонстрация первого компьютерного томографа, включающая в себя ряд испытаний, произошла в 1972 году. Результатом проведенного исследования стало обнаружение принципиально нового способа диагностики, позволяющего детально визуализировать важнейшие структуры организма.

Далее Лотербуром был частично сформулирован принцип работы аппарата МРТ – работа ученого легла в основу исследований, проводимых до наших дней. В частности, в статье содержались следующие утверждения:

Трехмерные проекции объектов получаются по спектрам ЯМР протонов воды из обследуемых структур, органов и т.д.

Особое внимание уделялось наблюдению за злокачественными новообразованиями. Опыты, проведенные Лотербуром, показали: они существенно отличаются от здоровых клеток. Разница заключается в характеристиках полученного сигнала.

В 70-е годы XX века началась новая эра развития МРТ-диагностики. В это время Ричардом Эрнстом было предложено проведение магнитно-резонансной томографии с использованием особого метода – кодирования (как частотного, так и фазового). Именно этим способом визуализации исследуемых областей и пользуются врачи в наши дни. В 1980 году был продемонстрирован снимок, на получение которого ушло около 5 минут. Уже через шесть лет длительность отображения снизилась – до пяти секунд. При этом качество картинки оставалось неизменным.

В 1988 году был усовершенствован и метод ангиографии, позволяющий отобразить кровоток пациента без дополнительного ввода в кровь препаратов, выполняющих роль контраста.

Развитие МРТ стало новой вехой в современной медицине. Эта процедура применяется в диагностике заболеваний:

мозга (головного и спинного);

молочных желез и т.д.

Возможности открытого метода позволяют обнаруживать заболевания на ранних стадиях и выявлять патологии, требующие своевременного лечения или же немедленного операционного вмешательства. Томография, проведенная на современном оборудовании, дает возможность получить точное изображение органов, обследуемых структур и тканей, а также:

собрать необходимую информацию о циркуляции спинномозговой жидкости;

определять уровень активации областей коры головного мозга;

проследить за газообменом в тканях.

Метод МРТ выгодно отличается от других способов диагностики:

Он не предполагает воздействия, осуществляемого при помощи хирургических инструментов.

Магнитно-резонансная томография безопасна и высокоэффективна.

Данная процедура относительно широко доступна и востребована при исследовании наиболее сложных случаев, требующих детальной визуализации происходящих в организме изменений.

На видео ниже демонстрируются основные этапы функционирования современного томографа:

Принцип работы МРТ (видео)

Принцип работы магнитно-резонансного сканера (МРТ)

Как проходит процедура? Человека помещают в специальный узкий тоннель, в котором он должен находиться в горизонтальном положении. В трубе на него воздействует сильное магнитное поле прибора. Исследование длится от 15 до 20 минут.

Каждый обследуемый и выводимый на экран в виде изображения срез имеет свою толщину. Рассматриваемый способ отображения схож с технологией удаления всего, что располагается над слоем и под ним. При этом большую роль играют отдельные элементы объема и плоскости – части среза и структурные компоненты получаемого магнитно-резонансного снимка.

Поскольку человеческое тело на 90% состоит из воды, происходит стимуляция протонов атомов водорода. Этот метод воздействия позволяет заглянуть в организм и диагностировать серьезные заболевания без физического вмешательства.

Устройство аппарата МРТ

Рассматриваемое современное оборудование состоит из следующих частей:

прибор, генерирующий радиоимпульсы;

системы, служащие для обработки поступающих данных.

Далее мы рассмотрим работу некоторых элементов отдельно.

Магнит

Создает стабильное поле, характеризующееся однородностью и высокой напряженностью. Именно по последнему показателю оценивается мощность прибора. Напомним о том, что именно от нее зависит качество получаемого изображения и скорость проведения процедуры.

В зависимости от напряженности все аппараты разделяются на следующие группы:

Низкопольные – оборудование начального уровня, открытые, сила поля < 0.5 Tл.

Среднепольные – показатели от 0,5-1 Тл.

Высокопольные – отличаются высокой скоростью исследования, четким изображением даже при движении пациента во время обследования. Напряженность магнитного поля этих установок – 1-2 Тл.

Сверхвысокопольные – более 2 Тл. Используются для исследовательских целей.

Также выделяются следующие виды используемых магнитов:

Постоянные – изготавливаются из сплавов, обладающих ферромагнитными свойствами. Преимущество таких элементов – их не нужно охлаждать, поскольку они не требуют энергии для поддержания однородного поля. Среди недостатков – большой вес используемой системы, низкая напряженность. Также подобные магниты чувствительны к температурным изменениям.

Сверхпроводящие – катушка, изготовленная из специального сплава. Через нее могут пропускать большие токи. Результатом работы такого устройства становится создание сильного магнитного поля. Дополнением к конструкции идет система охлаждения. Минусы данного вида – повышенное потребление жидкого гелия при низких энергозатратах, большие расходы на эксплуатацию прибора, обязательное экранирование. Также велик риск выбрасывания охлаждающей жидкости из криостата при потере свойств сверхпроводимости.

Принцип работы катушки в МРТ

Эти элементы предназначены для повышения однородности магнитного поля. Пропуская через себя ток, они корректируют характеристики, компенсируя недостаточную гомогенность. Такие детали либо размещаются непосредственно в жидком гелии, либо не требуют охлаждения.

Результатом работы градиентных катушек становится создание четкого изображения путем локализации сигнала и сохранения точного соответствия данных, полученных во время процедуры, и области, исследуемой врачом.

Большое значение имеют мощность и скорость действия деталей – от этих показателей зависит разрешающая способность прибора, уровень шума в соотношении с сигналом и быстрота действия.

Передатчик в МРТ: принцип работы элемента в системе томографа

Данный прибор формирует радиочастотные колебания и импульсы (прямоугольной и сложной формы). Подобное преобразование позволяет добиться возбуждения ядер, повлиять на контраст изображения, выводимого на снимок. Сигнал от элемента поступает на переключатель, который, в свою очередь, воздействует на катушку, генерируя РЧ магнитное поле, влияющее на спиновую систему.

Приемник

Представляет собой отличающийся высокой чувствительностью и низким уровнем шума усилитель сигнала, работа которого происходит на сверхвысоких частотах. Регистрируемый отклик претерпевает изменения – преобразование из МГц в кГц (от высоких частот к низким).

Запчасти для томографов

За получение точного детализированного изображения отвечают и регистрирующие датчики, которые располагаются вокруг исследуемого органа пациента. Подобная процедура абсолютно безопасна: произведя излучение сообщенной энергии, протоны возвращаются в прежнее состояние.

Качество проведенного обследования зависит не только от напряженности магнитного поля, но и от используемой катушки, применения контрастного вещества, особенностей диагностики и опыта специалиста, проводящего томографию.

Преимущества подобной процедуры:

возможность получения максимально точного изображения осматриваемого органа;

повышение качества диагностики;

безопасность для пациента.

Томографы отличаются по силе создаваемого ими поля и «открытости» магнита. Чем больше мощность поля, тем быстрее проходит процедура сканирования и выше качество получаемого трехмерного изображения.

Открытые аппараты МРТ имеют C-образную форму и являются оптимальным вариантом для обследования людей, страдающих выраженной клаустрофобией. Они создавались для проведения дополнительных процедур внутри магнита. Такой тип установок гораздо слабее закрытых томографов.

Ещё статьи

Хотите узнать больше или заказать

Укажите ваше имя, номер телефона и дополнительную информацию по желанию,

и мы свяжемся с вами и проконсультируем по всем вопросам.

Источник: http://mrimrt.ru/stati/chto_takoe_mrt/

Магнитно-резонансная томография, история открытия и принципы работы

В 1956 году в Мюнхене в Германии было образована международная электротехническая комиссия «Общество Тесла». Все машины МРТ откалиброваны в единицах » Тесла «. Сила магнитного поля измеряется в Тесла или в единицах Гаусс. Чем сильнее магнитное поле , тем большее количество радиосигналов, которые могут быть получены из атомов тела и, следовательно, тем выше качество изображения МРТ. 1 Тесла =Гаусс

  • Низкое поле МРТ = до 0,2 Тесла (2000 Гаусс)
  • Среднее поле МРТ = от 0,2 до 0,6 Тесла (от 2000 Гаусс до 6000 Гаусс)
  • Высокое поле МРТ = от 1,0 до 1,5 Тесла (отГаусс доГаусс)

В 1937 году профессор Колумбийского университета Исидор И. Раби, работая в Пупинской физической лаборатории в Колумбийском университете, Нью-Йорк, отметил квантовое явление, которое было названо ядерно-магнитным резонансом (ЯМР). Он выяснил , что атомные ядра отмечают свое присутствие за счет поглощения или излучения радиоволн при воздействии достаточно сильного магнитного поля .

Профессор Исидор И. Раби получил Нобелевскую премию за свою работу. В 1973 году Павел Лотербур, химик и исследователь ЯМР из Университета штата Нью-Йорк, получил первое ЯМР изображение.

Раймонд Дамадиан, врач и экспериментатор, работая в Даунстейтовском медицинском центре Бруклина, обнаружил, что сигнал водорода в раковой ткани отличается от здоровой ткани, потому что опухоли содержат больше воды. Чем больше воды, тем больше атомов водорода. После выключения аппарата МРТ, остаточные колебания радиоволн от раковой ткани длятся дольше, чем от здоровой ткани.

С помощью своих аспирантов, врачей Лоуренса Минкоффа и Майкла Голдсмита, доктор Дамадиан создал переносные катушки для мониторинга излучения водорода, и через некоторое время первый МРТ аппарат был сконструирован . 3 июля 1977 в течение почти пяти часов было проведено первое сканирование человеческого тела с помощью МРТ, а первые сканы пациента с раком груди были проведены в 1978 году.

Принцип работы МРТ

Магнитно-резонансная томография является медицинским диагностическим методом, который создает изображения тканей и органов человеческого тела с использованием принципа ядерного магнитного резонанса. МРТ может генерировать изображение тонкого среза ткани любой части человеческого тела — под любым углом и направлением. МРТ позволяет получить изображение человеческих органов и тканей с помощью электромагнитного поля.

МРТ создает сильное магнитное поле, а в организме человека есть своеобразные маленькие биологические » магниты «, состоящие из намагниченных протонов, входящих в состав атомов водорода. Протоны является основным элементом магнитных свойств тканей организма.

Во-первых, МРТ создает устойчивое состояние магнетизма в человеческом теле, когда тело помещено в постоянное магнитное поле. Во-вторых, МРТ стимулирует организм с помощью радиоволн, что меняет стационарную ориентацию протонов . В-третьих , аппарат останавливает радиоволны и регистрирует электромагнитную трансмиссию организма . В-четвертых , передаваемый сигнал используются для построения внутренних изображений тела с помощью обработки информации на компьютере .

МРТ изображение не является фотографическим. Это, на самом деле, компьютеризированная карта или изображение радиосигналов, излучаемых человеческим телом. МРТ превосходит по своим возможностям компьютерную томографию, так как не используется ионизирующее излучение как при КТ, а принцип работы основан на использовании безвредных электромагнитных волн.

Мощность магнитного поля

Магнитно-резонансная томография (МРТ) является многоплоскостным методом визуализации, основанном на взаимодействии между радиочастотным электромагнитным полем и некоторыми атомными ядрами в теле человека (обычно водорода), после помещения тела в сильное магнитное поле. Этот метод визуализации особенно качественно визуализирует мягкие ткани. Качество МРТ зависит не только от напряженности поля (выше 1 Тл считается высоким полем), но и от выбора катушки, использования контраста, параметров исследования, опыта специалиста, оценивающего полученное изображение и способного определить наличие патологии. Введение внутривенно контраста (гадолиния) часто используется при МРТ исследованиях. В настоящее время в МРТ аппаратах используется поле мощностью от 0.1 до 3.0 Т. В последние годы появились также томографы мощностью 7 Т, но их применение в клинике пока находится в стадии испытаний.

В клинической практике для аппаратов применяют следующую градацию аппаратов по мощности:

  • Низкопольные от 0.1 до 0.5 Т
  • Среднепольные от 0.5 до 0.9 Т
  • Высокопольные выше 1 Т
  • Сверх высокопольные 3.0 и 7.0 Т

Также подразделяют аппараты на открытого типа и закрытого (туннельного типа).

До последнего времени аппараты открытого типа были представлены только низкопольными аппаратами, но в настоящее время уже выпускаются и активно используются аппараты МРТ открытого типа с высоким полем (1 Т и более). Кроме того, появились аппараты для проведения исследований пациента в вертикальном положении или сидя. Разнообразие различных видов аппаратов МРТ позволяет очень широко использовать этот метод диагностики для определения морфологических изменений или функциональных нарушений при различных патологических состояниях.

Все аппараты можно условно разделить на низкопольные и высокопольные или открытого или туннельного типа.

Нередко пациенту трудно сделать выбор между проведением исследования на низкопольном или высокопольном аппаратах. Но между низкопольными и высокопольными аппаратами существует значительная разница.

Открытые (низкопольные) сканеры дают низкое качество изображений, и некоторые исследования для уточнения диагноза приходится повторять после низкопольных аппаратов на высокопольных аппаратах. Высокопольные МРТ аппараты с напряженностью магнитного поля (1 — 1,5-3.0 Тесла) обеспечивают высокое разрешение, которое позволяет визуализировать более детально структуру органов и тканей. Низкопольные аппараты МРТ обычно имеют мощность магнитного поля от 0.23 до 0.5 Тесла . Чем выше напряженность магнитного поля, тем лучше визуализация и более быстрее происходит сканирование. Существует прямая пропорция между увеличением мощности магнитного поля и качеством визуализации тканей .

МР аппараты сканируют тело слоями (срезами). Чем выше магнитное поле, тем срезы тоньше, что позволяет получить более детальную морфологическую картину тканей и, таким образом, более точно поставить диагноз.

Высокопольные МРТ требуют меньше времени на проведение исследования, благодаря более высокому магнитному полю. Высокопольные МРТ сканируют тело в полтора-два раза быстрее, чем аппараты низкопольные (открытого типа). Это очень важно, так как при длительном исследовании вероятность движения пациента и появления артефактов изображения увеличивается.

Высокопольные МРТ аппараты обеспечивают самые передовые методы визуализации, некоторые из которых не могут быть выполнены на аппаратах с низким магнитным полем.

Высокопольные аппараты МРТ постоянно совершенствуются для обеспечения большего комфорта для пациента и уменьшение беспокойства пациента во время проведения исследования. В последние годы были разработаны новые МРТ сканеры с существенно более короткой трубкой, что позволяет голове пациента быть снаружи отверстия магнита при выполнении ряда исследований. Отверстие магнита расширено в конце трубки, что уменьшает у пациента чувство замкнутого пространства, потому что голова пациента находится на пути к расширенному концу. Кроме того, отверстие имеет большую ширину, чем у более ранее сконструированных сканеров, что обеспечивает больше пространства вокруг пациента во время проведения исследования.

Тем не менее, у высокопольных аппаратов есть несколько минусов:

  1. Клаустрофобия. Небольшой процент пациентов боятся замкнутого пространства и не могут находиться внутри высокопольного аппарата. Подавляющему большинству этих пациентов бывает достаточно принять легкое седативное до проведения исследования .Но при наличии выраженной клаустрофобии проведение исследования на аппаратах туннельного типа таким пациентам бывает весьма затруднительно .
  2. Размер. МРТ-аппараты высокопольные имеют ограниченное пространство, и некоторые пациенты из-за больших размеров тела могут быть слишком велики, чтобы уместиться в туннеле МРТ аппарата. Некоторые высокопольные МРТ имеют также ограничения по весу.
  3. Боль. Если у пациента имеется сильный болевой синдром в спине, в шее или другие симптомы то это затрудняет возможность пациента лежать неподвижно в течение длительного периода.

Поэтому, низкопольные (открытого типа) аппараты МРТ могут быть более подходящим для некоторых пациентов, например, с истинной клаустрофобией или с большими размерами тела.

Источник: http://trauma.ru/content/articles/detail.php?ELEMENT_ID=15291

Как работает аппарат МРТ (Магнитно-Резонансной Томографии)

Одним из наиболее результативных способов медицинского обследования, является МРТ или магнитно-резонансная томография, дающая возможность обрести наиболее точную информацию об особенностях анатомии человеческого организма, эндокринной системы, возбудимости тканей, а также внутренних органов. Возможность определения локализации процесса и объема произошедших повреждений становится основным преимуществом процедуры МРТ при обнаружении злокачественных опухолей и обследования сосудов.

Что представляет из себя МРТ?

Магнитно-резонансная томография – это исключительный шанс получить точнейшие послойные изображения, области организма, которая исследуется. Процедура осуществляется посредством специализированного устройства, влияние которого, на человеческий организм, находится в стимулировании электромагнитных волн, образовании внушительного магнитного поля и фиксирования обратного электромагнитного сигнала от человеческого организма. Итогом, является выстраивание изображения, при помощи обрабатывания поступающего сигнала на компьютер.

Магнитно-резонансный томограф, является аппаратом, дающим возможность достичь эффективнейшего диагностирования, определить метаморфозы в функционировании организма и осуществить высочайшее по точности изображение изучаемых органов, которое дает результаты, на порядок выше, нежели рентген, компьютерная томография или УЗИ. Магнитно-резонансная томография дает возможность обнаружить онкологические заболевания и перечень других не менее опасных болезней, а также замерить быстроту кровотока и течение спинномозговой жидкости.

За основу функционирования МРТ, взят ЯМР принцип, с последовательным обрабатыванием приобретенной информации, специализированными программами. Томограф создает условия для возникновения сильнейшего магнитного поля. Существенным фактором, поясняющим суть работы томографа, является присутствие в организме человека протонов (из уроков химии, многим должно быть известно, что протон – это ядро атома водорода). Аппарат МРТ дает возможность содействовать неизменному состоянию магнетизма в теле человека, при его размещении внутри устройства. В результате чего, он осуществляет:

  • стимулирование организма с помощью электромагнитных волн, помогая смене стабильной направленности настроенных частиц;
  • приостановку электромагнитных волн и фиксацию тех же излучений, со стороны человеческого организма;
  • обрабатывание принятого сигнала и перестройка его в картинку (изображение).

Итоговое изображение – это совсем не фотография или фото-негатив изучаемой части тела или органа. Радиосигналы преобразовываются в высококачественное изображение среза человеческого организма, на экране монитора. Доктора видят органы в разрезе. Магнитно-Резонансная Томография, является более точным и надежным методом диагностирования, нежели КТ (компьютерная томография), ведь при МРТ не осуществляется применение ионизирующего излучения, наоборот, применяются абсолютно безвредные для организма электромагнитные волны.

История производства и особенности устройства аппарата МРТ

Датой сотворения сего полезнейшего устройства, называют 1973 год, а одним из первых разработчиков, считается – Пол Лотербур. В одном из его трудов был четко описан факт изображения строений организма и органов, благодаря применению магнитных и радиоволн.

Однако, Лотербур не единственный изобретатель, приложивший руку к изобретению МРТ. За 27 лет до этого, Ричард Пурселл и Феликс Блох, работая в Гарвардском Университете, испытывали явление, основой которого являлось качество, характерное для атомных ядер (изначальное вбирание энергии и ее последующее «отдавание», то есть отделение с возвращением к исходному состоянию). Спустя шесть лет, за свою работу, ученые были удостоены Нобелевской премии.

Их открытие, стало, в определенном роде, прорывом для развития суждения по ЯМР.

Удивительный феномен подвергался изучению многими ученными, не только физиками, но и математиками, и химиками. Показ первого Компьютерного Томографа, с перечнем опытов, был осуществлен в 1972 году. В результате, был выявлен новейший способ диагностирования, позволяющий подробно изображать наиболее важные структуры человеческого организма.

Впоследствии, некто Лотербур, хоть и не в полной мере, но высказал принцип функционирования МРТ. Его работа стала толчком для развития и дальнейших исследований в данной отрасли.

Немало времени уделяли надзору над недоброкачественными опухолями.

Исследования, производящиеся Лотербуром, продемонстрировали: они кардинально разнятся со здоровыми клетками. Разница состоит в параметрах добываемого сигнала.

И так, можно смело утверждать, что стартом новейшей эры развития диагностирования с помощью МРТ, являются семидесятые годы прошлого века. Именно в тот период времени, Ричард Эрнст, предложил осуществление МРТ с применением особенного метода – кодирования (и радиочастотного, и фазового). Метод, который был предложен тогда, используют доктора и в наши дни. В восьмидесятом году прошлого века было продемонстрировано изображение, на создание которого было затрачено всего 5 минут, а через шесть лет, это время составляло уже 5 секунд. Стоит отметить, что качество изображения при этом, не изменилось.

Через 8 лет после первого изображения, внушительный рывок произошел и в ангиографии, дающей возможность показать кровоток человека без вспомогательного введения в кровь лекарств, выполняющих функцию контраста.

Развитие данной отрасли стало историческим моментом для современной медицины.

МРТ используется в диагностировании болезней:

  • позвоночника;
  • суставов;
  • головного и спинного мозга;
  • нижнего мозгового придатка;
  • внутренних органов;
  • парных молочных желез внешней секреции и так далее.

Потенциал открытого метода, дает возможность выявлять болезни на начальных стадиях и находить аномалии, нуждающиеся в безотлагательном лечении или в неотложном хирургическом вмешательстве.

Процедура МРТ, осуществленная на нынешнем ультрасовременном оборудовании, позволяет:

  • получить точнейшую визуализацию внутренних органов, тканей;
  • накопить нужные данные о вращении спинномозговой жидкости;
  • выявить уровень активности областей коры головного мозга;
  • отслеживать газообмен, происходящий в тканях.

МРТ значительно и в лучшую сторону отличим от прочих методов диагностирования:

  • Он не предусматривает манипуляций с хирургическими инструментами;
  • Он эффективен и безопасен;
  • Процедура достаточно распространена, доступна и необходима при изучении наиболее серьезных случаев, нуждающихся в подробном изображении случающихся в организме метаморфоз.

Принцип работы Магнитно-Резонансного Томографа (МРТ)

Процедура производится следующим образом. Пациента размещают в специализированное узкое углубление (своего рода тоннель), в котором он обязательно должен быть размещен горизонтально. Длительность процедуры составляет от четверти до половины часа.

По завершении процедуры, человеку на руки отдают изображение, которое формируется с помощью ЯМР метода – физического явления магнитного и ядерного резонанса, связанного с особенностями протонов. Благодаря радиочастотному импульсу, в образованном при помощи аппарата электромагнитном поле преобразуется излучение, превращающееся в сигнал. Затем он принимается и подвергается обработке специализированной программой для компьютера.

Каждый изучаемый и выводящийся на монитор, в виде визуализации, срез, обладает индивидуальной толщиной. Этот метод отображения похож на технологию удаления всего лишнего над или под слоем. Немаловажную роль, при этом, выполняют конкретные элементы объема и части среза.

Из-за того, что тело человека на 90% состоит из жидкости, осуществляется стимулирование протонов атомов водорода. Метод МРТ, дает возможность взглянуть в организм и определить серьезность недуга без непосредственного физического вмешательства.

Устройство МРТ

Современный аппарат МРТ, состоит из таких частей:

  • магнит;
  • катушки;
  • генератор радиоимпульсов;
  • клетка Фарадея;
  • ресурс питания;
  • охладительная система;
  • системы, обрабатывающие получаемые данные.

В последующих пунктах мы изучим работу части отдельных элементов аппарата МРТ!

Магнит

Производит стабилизированное поле, которое характеризуется равномерностью и внушительной эмфазой (напряженностью). Из заключительного показателя выявляется мощность устройства. Упомянем еще раз, именно от мощности зависит то, насколько высокое качество обретет визуализация после окончания терапии.

Аппараты делятся на 4 группы:

  • Низкопольные – оснащение начального типа, сила поля менее 0.5 Тл;
  • Среднепольные – сила поля от 0,5-1 Тл;
  • Высокопольные – характеризуются великолепной скоростью обследования, хорошо просматриваемой визуализаций, даже если человек двигался при процедуре. Сила поля – 1-2 Тл;
  • Сверхвысокопольные – более 2 Тл. Применяются исключительно при исследованиях.

Также стоит отметить такие разновидности применяемых магнитов:

Постоянный магнит – производится из сплавов, имеющих, так называемые Ферромагнитные свойства. Плюсами данных элементов, являет то, что им нет необходимости понижать температуру, потому что им не нужно энергии для поддержки однородного поля. Из минусов, стоит отметить внушительную массу и незначительную напряженность. Кроме прочего, такие магниты, восприимчивы к изменениям температур.

Сверхпроводимый магнит – катушка, созданная из особого сплава. Через данную катушку, происходит пропуск огромных токов. Благодаря аппаратам с подобными катушками, в них создается внушительное по силе магнитное поле. Однако, в сравнении с предыдущим магнитом, для сверхпроводимого магнита, необходима охладительная система. Из минусов, стоит отметить значительный расход жидкого гелия при незначительных затратах энергии, внушительные затраты на эксплуатирование агрегата, экранирование в обязательном порядке. Кроме прочего, существует риск выброса жидкости для охлаждения при утрате сверх проводимых свойств.

Резистивный магнит – не нуждается в применении специализированных систем охлаждения, и могут производить относительно однородное поле для осуществления сложных испытаний. Из минусов, стоит отметить внушительную массу, составляющую около пяти тонн и повышающуюся в случае экранирования.

Передатчик

Вырабатывает колебания и импульсы радиочастот (формы прямоугольника и сложной). Данное изменение дает возможность достичь возбуждения ядер, улучшить контрастность картинки, получаемой в результате обработки данных. Сигнал передает на переключатель, который оказывает действие на катушку, образуя магнитное поле, обладающее влиянием на спиновую систему.

Приемник

Это усилитель сигнала с высочайшей чувствительностью и незначительным шумом, который работает на сверхвысоких частотах. Получаемый отзыв видоизменяется из мГц в кГц (то есть от больших частот, к меньшим).

Прочие запчасти

Для более подробной детализации картинки несут ответственность, также, датчики регистрации, расположенные около изучаемого органа. Процедура МРТ не представляет никакой опасности для человека, осуществив излучение сообщаемой энергии, протоны перетекают в изначальное состояние.

Чтобы качество визуализации было лучше, исследуемому человеку могут ввести вещество контрастного типа на основе Gadolinium, которое не обладает побочными действиями. Вводится он при помощи шприца, который автоматизировано, подсчитывает необходимую дозу и быстроту введения препарата. Средство поступает в организм синхронно с протекающей процедурой.

Качество МРТ исследования, зависит от большого количества факторов – это и состояние магнитного поля, катушка, которая применяется, какой контрастный препарат и даже доктор, проводящий процедуру.

Преимущества МРТ:

  • высочайшая вероятность получить наиболее точную визуализацию исследуемой части тела или органа;
  • постоянно развивающееся качество диагностирования;
  • отсутствие негативных воздействий на человеческий организм;

Аппараты разнятся по силе генерируемого поля и «распахнутости» магнита. Чем выше мощность, тем скорее проводится исследование и тем лучше качество визуализации.

Открытые аппараты, обладают C-образной формой и считаются наилучшим для исследования людей, подверженных тяжелым формам клаустрофобии. Изначально они разрабатывались для осуществления вспомогательных внутри-магнитных процедур. Также, стоит отметить, что эта разновидность устройства значительно слабее, нежели закрытый аппарат.

Обследование с помощью МРТ — одно из наиболее результативных и неопасных методов диагностирования и максимально информативно для подробного изучения спинного и головного мозга, позвоночника, органов брюшной полости и малого таза.

Источник: http://kakustroen.ru/kak-rabotaet-apparat-mrt-magnitno-rezonansnoy-tomografii

uziprosto.ru

Энциклопедия УЗИ и МРТ

Чудо диагностики: принцип работы МРТ

Буквально три-четыре столетия назад докторам приходилось ставить диагноз, не имея ничего точнее рентгенологического исследования. Даже тогда было диковинкой, о которой мало кто что-либо слышал. Сейчас столько точных исследований, которые помогают дать четкое представление о той или иной патологии, ее размерах, форме и опасности. Среди таких диагностических процедур магнитно-резонансная томография. В чем же ее принцип?

Принцип работы

За принцип этой диагностической процедуры взят феномен ЯМР (ядерно-магнитный резонанс), при помощи которого можно получить послойное изображение органов и тканей организма.

Ядерно-магнитный резонанс – это физическое явление, которое заключается в особенных свойствах ядер атомов. При помощи импульса радиочастотной природы в электромагнитном поле в виде особого сигнала излучается энергия. Компьютер отображает и запечатлевает эту энергию.

ЯМР дает возможность все знать об организме человека из-за насыщенности последнего атомами водорода и магнитных свойств тканей организма. Установить, где находится тот или иной атом водорода, можно благодаря векторному направлению протонных параметров, которые делятся на две расположенные по разные стороны фазы, а также их зависимости от магнитного момента.

Принцип работы МРТ

При помещении ядра атома во внешнее магнитное поле, момент магнитной природы направится в противоположную сторону от магнитного момента поля. Когда на определенный участок организма воздействует электромагнитное излучение с той или иной частотой, некоторые протоны изменяют свое направление, но затем все снова возвращается на круги своя. На этом этапе при помощи специальной системы в компьютере производится сбор данных, полученных с томографа, регистрируются несколько «расслабленных» ядер атома.

Что такое магнитно-резонансная томография?

МРТ — на сегодняшний день единственный метод лучевой диагностики, который может дать наиболее точные данные о состоянии организма человека, метаболизме, строении и физиологических процессах в тканях и органах.

Во время исследования создаются снимки отдельных участков организма. Органы и ткани отображаются в разных проекциях, что дает возможность увидеть их в разрезе. После врачебной оценки таких снимков можно сделать достаточно точные выводы об их состоянии.

Принято считать, что МРТ была основана в 1973 году. Но первые томографы существенно отличались от современных. Качество их изображения было низким, хотя они и были гораздо мощнее, чем томографы сегодняшнего дня. Прежде чем появились томографы, имеющие вид современных и работающие также качественно и точно, над их усовершенствованием трудились величайшие умы мира.

Современный магнитно-резонансный томограф – это высотехнологичное устройство, работающее благодаря взаимодействию магнитного поля и радиоволн. Прибор выглядит как тоннельная труба с выдвижным столом, на котором и размещают пациента. Работа этого стола устроена так, что может перемещаться в зависимости от томографического магнита.

Пример современного аппарата МРТ

Обследуемый участок окружают радиочастотные датчики, считывающие сигналы и передающие их на компьютер. Полученные данные обрабатываются на компьютере, вследствие чего и получается точное изображение. Эти снимки записывают на пленку либо на диск.

В результате получается не снимок на подобие рентгеновского, а точное изображение необходимого участка в нескольких плоскостях. Можно посмотреть мягкие ткани в различных разрезах, при этом костная ткань не отображается, а значит – и мешать не будет.

При помощи этой методики можно визуализировать сосудистое русло, органы, различные ткани тела, нервные волокна, связочный аппарата и мышцы. Можно оценить скорость движения крови, измерить температуру любого органа.

МРТ бывает с применением контрастного вещества или без него. Контраст делает аппаратуру более чувствительной.

Сам процесс исследования совершенно безболезненен. Вмешательство радиоволн и магнитного поля в свой организм никак не ощущается. Зато ощущается множество различных специфических для данной процедуры звуков: различных сигналов, постукиваний, разных шумов. В некоторых клиниках выдают специальные беруши, чтобы пациента не раздражали эти звуки.

Нужно учесть один немаловажный нюанс. Во время процедуры пациента помещают внутрь томографа, который представляет собой тоннелеобразный магнит. Есть люди, которые боятся закрытых пространств. Страх этот может быть различной интенсивности – от небольшого беспокойства до паники. В некоторых лечебных учреждениях есть открытые томографы для таких категорий пациентов. Если же такого томографа нет, то нужно рассказать о своих проблемах доктору, он назначит успокоительное перед исследованием.

Для каких исследований больше всего подходит?

Без магнитно-резонансной томографии не обойтись при диагностике таких состояний:

  • многие недуги воспалительного характера, например, мочеполовых органов;
  • нарушения головного и спинного мозга (патологии нервной системы, гипофиза);
  • опухоли, как доброкачественные, так и злокачественные. Этот единственный метод, который предоставляет самые точные данные о метастазах, позволяет видеть даже самые мелкие, которые при других исследованиях незаметны. Помогает выяснить, уменьшаются ли они после проведенной терапии или, наоборот, увеличиваются;

патологии сердечной и сосудистой систем (сосудистые нарушения, пороки сердца);

  • травмы органов и мягких тканей;
  • для определения эффективности проведенного оперативного лечения, химиотерапии и лучей;
  • инфекционные процессы в суставах и костях.
  • Преимущества и недостатки МРТ

    У каждой методики есть свои положительные стороны и свои минусы. Среди плюсов этого исследования отмечают:

    • методика не вызывает боли или каких-нибудь неприятных ощущений, кроме звуков, которые издает аппарат при работе;
    • нет никакого вредного радиоактивного излучения, которое присутствует, к примеру, при рентгенологических методах;
    • после процедуры получаются изображения высокого качества, контрастные вещества не причиняют таких побочных эффектов, как при рентгеновском исследовании;
    • не нужна никакая специальная подготовка;
    • исследование является самым информативным и точным среди других, известных ныне.

    Исследование дает возможность получить точные и достоверные данные о строении, размерах, форме тканей и органов. Иногда МРТ является единственной возможностью выявить серьезный недуг в начальной стадии, к сожалению, эффективность процедуры недостаточно высока при диагностике костной ткани и нарушениях функции суставов. Но светила медицины смогли и здесь найти выход: если сопоставить данные МРТ и КТ (компьютерной томографии), можно получить вполне достоверные и информативные данные.

    Как у каждой методики, у МРТ есть свои противопоказания. Они могут быть относительными и абсолютными. К абсолютным противопоказаниям относят:

    • если у пациента есть вживленный кардиостимулятор;
    • электромагнитные имплантанты в среднем ухе;
    • различные имплантанты металлического или ферромагнитного происхождения.

    К относительным противопоказаниям относят:

    • заболевания сердца, печени и почек в стадии декомпенсации;
    • почечная недостаточность;
    • клаустрофобия, беспокойство в закрытых пространствах;
    • беременность в первом триместре.

    Насколько эффективно пройдет та или иная процедура зависит от многих обстоятельств. Не стоит при малейших подозрениях на наличие той или иной патологии незамедлительно бежать на МРТ. Не смотря на всю точность этого метода, могут быть некоторые нюансы, которые способен выявить только специалист. Например, проводить исследование с контрастом или без него, или делать МРТ параллельно с КТ, ультразвуковым, рентгеновским или другим исследованием, лабораторными анализами.

    Интернет, безусловно, очень полезная и нужная вещь, как, впрочем, и советы знакомых. Но все это не может заменить объективного врачебного исследования и опроса. Только специалист может правильно подойти к вопросу назначения магнитно-резонансной томографии. Поэтому перед тем как идти на эту процедуру нужно зайти к своему терапевту и взять направление, где будет указан предположительный диагноз и какой именно орган или участок нужно исследовать.

    После исследования, с полученными данными также лучше пойти к специалисту. Возможно, он решит назначить еще какие-то дополнительные исследования, чтобы прояснить ситуацию и назначить, если нужно, лечение.

    Источник: http://uziprosto.ru/mrt/inye-voprosy/princip-raboty-mrt-chudo-diagnostiki.html

    Как работает аппарат МРТ – метод диагностики, схема и принцип действия томографа

    Среди современных методов обследования особое внимание необходимо уделить тому, как работает МРТ. Для неосведомленных пациентов такая диагностика кажется пугающей, что породило кучу мифов о томографии. Сам томограф похож на капсулу необычного прибора, непонятны процессы проходящие внутри. Всё неизвестное вызывает сомнение, поэтому пациенты не всегда соглашаются пройти диагностику на томографе. Но это в корне неправильно! Полная и детальная информация, полученная с помощью магнитно-резонансной томографии необходима для точной постановки диагноза и выработки правильной схемы лечения. При этом воздействие томографа абсолютно безопасно для организма!

    Суть метода диагностики

    Изобретение магнитно-резонансного сканирования стало прорывом в диагностике. До этого увидеть все органы так чётко можно было только при вскрытии человека после его смерти. Томография позволила определять скорость движения крови по сосудам, состояние костной, хрящевой ткани, активность головного мозга. Все внутренние органы, включая позвоночник, молочные железы, зубы, носовые пазухи можно рассмотреть и даже понять, как они работают, при проведении обследования на томографе.

    Принцип работы МРТ кроется в воздействии на ядра водорода, которые есть в любой клетке человека. Сразу после открытия этого явления (1973 год) оно называлось ядерно-магнитным резонансом. Но после аварии на Чернобыльской АЭС (1986 год) со словом «ядерный» начали складываться отрицательные ассоциации. Поэтому данный метод диагностики переименовали в МРТ, что не изменило его сути и того, как метод работает.

    Принцип действия магнитно-резонансного сканирования заключается в следующем – под влиянием сильного магнитного поля ядра водорода начинают двигаться, выстраиваются в одной очерёдности. По окончании действия магнита, когда он больше не работает, атомы приходят в движение, начинают колебаться все вместе, выделяя при этом энергию. Томограф фиксирует показания энергии, компьютерная программа их обрабатывает, выдавая трехмерную картинку органа. В этом состоит для МРТ принцип его работы.

    В результате обследования получается серия снимков, есть возможность воссоздать трёхмерное изображение проблемного участка, повернуть его со всех сторон, рассмотреть в любой плоскости. Это важно при обследовании, постановке диагноза.

    Принцип работы томографа основывается на колебании магнитных волн — никакого радиационного облучения

    Когда лучше делать томографию?

    При постановке диагноза не всегда назначают пройти МРТ. И дело не в том, что это дорогая процедура, возможно и бесплатное обследование. Для этого метода есть специальные направления использования. Томограф целесообразно применять при определении диагноза, перед хирургическим вмешательством для уточнения деталей операции, после её проведения для осмотра результатов. МРТ делают при длительном лечении для корректировки терапии и оценки эффективности проведённых процедур. Это безопасный способ обследования, его можно проводить при необходимости несколько раз в день.

    МРТ необходимо делать при диагностике следующих болезней:

    • формирование опухолей доброкачественного и злокачественного характера;
    • аневризмы сосудов кровеносной системы;
    • инфекции суставов и костной ткани;
    • болезни сердца и сосудов;
    • нарушения функций головного и спинного мозга;
    • патологии воспалительного характера, например, мочеполовой системы;
    • оценка оперативного лечения и химиотерапии при онкологии;
    • травмы внутренних органов и мягких тканей.

    Магнитно-резонансную томографию не назначают с целью разработки методов профилактики, а только по конкретно поставленной задаче для точного диагностирования.

    Альтернативные способы постановки диагноза

    Кроме магнитно-резонансного сканирования, существуют и другие методы диагностики – компьютерная томография, УЗИ, ЭЭГ. При этом выбрать между КТ и МРТ иногда бывает непросто, ведь работают они по-разному. Сравнение методов представлено в таблице.

    Магнитно-резонансная томография – МРТ

    Работает без радиации. Выявляет многие заболевания на ранних стадиях. Не производит облучения, поэтому может проводиться детям и беременным женщинам. В результате получаются точные детальные изображения.

    Есть ограничения к проведению, например, металлические включения в теле пациента. Томограф с ними плохо работает.

    Компьютерная томография – КТ

    Хорошо показывает состояние костной ткани. Нет противопоказаний по поводу металлических включений в теле, как при МРТ. Аппарат работает быстро.

    Человек получает ионизирующее облучение в процессе сеанса.

    Ультразвуковое исследование – УЗИ

    Нет противопоказаний к проведению данного обследования. Аппарат работает на основе резонансных волн.

    Этот метод не позволяет оценить состояние костной ткани, некоторых внутренних органов, например, желудка, лёгких. Данные не отличаются точностью, как при МРТ.

    Высокоточное обследование заболеваний головного мозга. Работает при любом диагнозе, поскольку не имеет противопоказаний.

    Не выявляет наличие опухолей, способ неточный, так как на результаты влияют эмоции пациента.

    Каждый метод диагностики, включая МРТ, имеет свои отрицательные и положительные стороны, поэтому используется в своей области медицины. Оптимальный вариант выбирается на основе того, как работает то или иное оборудование.

    Когда применяют контраст?

    Иногда перед проведением обследования в вену пациента вводится контрастное вещество. Это необходимо для получения на снимках более чёткого изображения некоторых участков. С ним МРТ работает более детализировано. Так бывает при диагностике опухолей. Контрастное вещество накапливается в новообразованиях и дополнительно подсвечивает их на изображениях. При диагностировании аневризмы сосудов контрастом вычерчивается целая схема кровеносной системы, по которой врачу легче выявить нарушения.

    Контрастным веществом при МРТ служит гадолиний. Он работает для подсветки кровеносных сосудов и выводится почками из организма, хорошо переносится пациентами, редко вызывает аллергическую реакцию. При его применении существуют определённые противопоказания. Поэтому перед введением препарата проводят пробы на его переносимость.

    Противопоказано применение контрастного вещества:

    • лицам с аллергической реакцией на гадолиний;
    • беременным и кормящим женщинам;
    • людям, больным сахарным диабетом;
    • пациентам с хроническими болезнями почек.

    Гадолиний после проведения процедуры томографии выводится через несколько часов через почки. Лишняя нагрузка на них может спровоцировать обострение хронических патологий. Именно поэтому при больных почках контрастом не пользуются.

    В каких случаях нельзя делать томографию?

    Существуют серьёзные ограничения для проведения магнитно-резонансного сканирования:

    • беременность на ранних сроках;
    • клаустрофобия;
    • психические нарушения, когда человек не может продолжительное время находиться в неподвижном положении, контролировать своё состояние;
    • металлические включения в теле пациента – штифты, клипсы на сосудах, скобы, протезы, спицы;
    • вживлённые электронные устройства, которые работают постоянно, их невозможно убрать при проведении томографии, например, кардиостимуляторы;
    • эпилепсия;
    • татуировки, выполненные краской с металлическими частицами;
    • тяжёлое физическое состояние пациента, например, постоянное нахождение на аппарате искусственного дыхания.

    При компьютерной томографии таких противопоказаний нет. Назначают её при невозможности сделать МРТ. Такое обследование подходит там, где не работает томограф.

    Металлические фрагменты в организме делают изображения нечёткими, их будет трудно расшифровывать. Электронные устройства ломаются под влиянием сильного магнита. В применении томографа нужно соблюдать ограничения, чтобы избежать таких неприятностей.

    Подготовка к обследованию

    Положительной стороной метода магнитно-резонансного сканирования является почти полное отсутствие подготовки к диагностике. Но врачи советуют за несколько дней перед сеансом томографии отказаться от употребления спиртных напитков и не кушать много тяжелой для ЖКТ пищи. Хотя это остаётся на уровне рекомендаций. Если будет использоваться контраст, то лучше плотно поесть. Это поможет избежать приступов тошноты.

    Перед процедурой нужно снять все металлические украшения, запонки, часы, очки, съёмные зубные протезы. На одежде не должно оставаться деталей из металла. В современных медицинских диагностических центрах выдают комплекты одноразовой одежды для обследования. Лучшее переодеться в неё. Если в своей одежде осталась незамеченная деталь из металла, то при обследовании головного мозга или шеи впоследствии может болеть голова от присутствия на одежде постороннего железного предмета.

    Устройство для сканирования представляет собой тоннель, в который въезжает стол с пациентом. Важно не двигаться при обследовании, тогда изображения получатся чёткими и качественными. Чтобы не произошло случайного шевеления конечностями, руки и ноги пациента закрепляют к столу мягкими ремнями.

    МРТ можно без вреда использовать для диагностики любого органа, процедура безболезненна

    Как проходит процедура?

    В тоннеле томографа пациент не будет чувствовать дискомфорт, процедура безболезненная. Иногда поступают жалобы на резкие, непривычные звуки, которые издаёт аппарат во время работы. В некоторых центрах выдают наушники с приятной музыкой или беруши, их можно взять и из дома. В руках у пациента будет кнопка связи с персоналом. Если человек почувствует себя плохо, нужно нажать на неё, сеанс томографии прервётся.

    Весь персонал находится в другой комнате, работает с компьютерами. Но пациент не остается один, за ним наблюдают через окно. Процедура магнитно-резонансной томографии вполне комфортная. В среднем сеанс длится 40 минут, с применением контрастного вещества немного дольше. Внутренний объём у аппарата МРТ достаточный. Человек не лежит там, как в узкой коробке. Ему хватает воздуха, и пространства. Психологическое состояние у здорового человека не страдает и остаётся в норме. Многим пациентам даже интересно опробовать такой метод диагностики и побывать в томографе, узнать, как именно он работает.

    Обработка результатов

    Для расшифровки изображений после МРТ нужны специалисты, которые по малейшим изменениям могут диагностировать патологии. Подготовка заключения занимает несколько дней, но первые выводы врач сообщает сразу. Резонансные участки видны на снимках чётко – это могут быть изменения внутренних органов, наличие жидкости (где её не должно быть). Такая патология говорит о внутреннем кровотечении или инфекции.

    Заключение лаборанта после магнитно-резонансной томографии является только перечислением увиденных изменений. Например, повреждение связок, наличие опухоли, изменение структуры, формы и размера кровеносных сосудов в определённом месте. Диагноз будет ставить врач, направивший на обследование. Не нужно самостоятельно пытаться определить болезнь по заключению. Для этого необходимы ещё дополнительные обследования и анализы.

    Источник: http://metod-diagnostiki.ru/magnitno-rezonansnaya-tomografiya/osobennosti-obsledovaniya/kak-rabotayet-mrt/

    Принцип работы аппарата мрт

    В 1956 году в Мюнхене в Германии было образована международная электротехническая комиссия «Общество Тесла». Все машины МРТ откалиброваны в единицах » Тесла «.

    Оглавление:

    Сила магнитного поля измеряется в Тесла или в единицах Гаусс. Чем сильнее магнитное поле , тем большее количество радиосигналов, которые могут быть получены из атомов тела и, следовательно, тем выше качество изображения МРТ. 1 Тесла =Гаусс

    • Низкое поле МРТ = до 0,2 Тесла (2000 Гаусс)
    • Среднее поле МРТ = от 0,2 до 0,6 Тесла (от 2000 Гаусс до 6000 Гаусс)
    • Высокое поле МРТ = от 1,0 до 1,5 Тесла (отГаусс доГаусс)

    В 1937 году профессор Колумбийского университета Исидор И. Раби, работая в Пупинской физической лаборатории в Колумбийском университете, Нью-Йорк, отметил квантовое явление, которое было названо ядерно-магнитным резонансом (ЯМР). Он выяснил , что атомные ядра отмечают свое присутствие за счет поглощения или излучения радиоволн при воздействии достаточно сильного магнитного поля .

    Профессор Исидор И. Раби получил Нобелевскую премию за свою работу. В 1973 году Павел Лотербур, химик и исследователь ЯМР из Университета штата Нью-Йорк, получил первое ЯМР изображение.

    Раймонд Дамадиан, врач и экспериментатор, работая в Даунстейтовском медицинском центре Бруклина, обнаружил, что сигнал водорода в раковой ткани отличается от здоровой ткани, потому что опухоли содержат больше воды. Чем больше воды, тем больше атомов водорода. После выключения аппарата МРТ, остаточные колебания радиоволн от раковой ткани длятся дольше, чем от здоровой ткани.

    С помощью своих аспирантов, врачей Лоуренса Минкоффа и Майкла Голдсмита, доктор Дамадиан создал переносные катушки для мониторинга излучения водорода, и через некоторое время первый МРТ аппарат был сконструирован . 3 июля 1977 в течение почти пяти часов было проведено первое сканирование человеческого тела с помощью МРТ, а первые сканы пациента с раком груди были проведены в 1978 году.

    Принцип работы МРТ

    Магнитно-резонансная томография является медицинским диагностическим методом, который создает изображения тканей и органов человеческого тела с использованием принципа ядерного магнитного резонанса. МРТ может генерировать изображение тонкого среза ткани любой части человеческого тела — под любым углом и направлением. МРТ позволяет получить изображение человеческих органов и тканей с помощью электромагнитного поля.

    МРТ создает сильное магнитное поле, а в организме человека есть своеобразные маленькие биологические » магниты «, состоящие из намагниченных протонов, входящих в состав атомов водорода. Протоны является основным элементом магнитных свойств тканей организма.

    Во-первых, МРТ создает устойчивое состояние магнетизма в человеческом теле, когда тело помещено в постоянное магнитное поле. Во-вторых, МРТ стимулирует организм с помощью радиоволн, что меняет стационарную ориентацию протонов . В-третьих , аппарат останавливает радиоволны и регистрирует электромагнитную трансмиссию организма . В-четвертых , передаваемый сигнал используются для построения внутренних изображений тела с помощью обработки информации на компьютере .

    МРТ изображение не является фотографическим. Это, на самом деле, компьютеризированная карта или изображение радиосигналов, излучаемых человеческим телом. МРТ превосходит по своим возможностям компьютерную томографию, так как не используется ионизирующее излучение как при КТ, а принцип работы основан на использовании безвредных электромагнитных волн.

    Мощность магнитного поля

    Магнитно-резонансная томография (МРТ) является многоплоскостным методом визуализации, основанном на взаимодействии между радиочастотным электромагнитным полем и некоторыми атомными ядрами в теле человека (обычно водорода), после помещения тела в сильное магнитное поле. Этот метод визуализации особенно качественно визуализирует мягкие ткани. Качество МРТ зависит не только от напряженности поля (выше 1 Тл считается высоким полем), но и от выбора катушки, использования контраста, параметров исследования, опыта специалиста, оценивающего полученное изображение и способного определить наличие патологии. Введение внутривенно контраста (гадолиния) часто используется при МРТ исследованиях. В настоящее время в МРТ аппаратах используется поле мощностью от 0.1 до 3.0 Т. В последние годы появились также томографы мощностью 7 Т, но их применение в клинике пока находится в стадии испытаний.

    В клинической практике для аппаратов применяют следующую градацию аппаратов по мощности:

    • Низкопольные от 0.1 до 0.5 Т
    • Среднепольные от 0.5 до 0.9 Т
    • Высокопольные выше 1 Т
    • Сверх высокопольные 3.0 и 7.0 Т

    Также подразделяют аппараты на открытого типа и закрытого (туннельного типа).

    До последнего времени аппараты открытого типа были представлены только низкопольными аппаратами, но в настоящее время уже выпускаются и активно используются аппараты МРТ открытого типа с высоким полем (1 Т и более). Кроме того, появились аппараты для проведения исследований пациента в вертикальном положении или сидя. Разнообразие различных видов аппаратов МРТ позволяет очень широко использовать этот метод диагностики для определения морфологических изменений или функциональных нарушений при различных патологических состояниях.

    Все аппараты можно условно разделить на низкопольные и высокопольные или открытого или туннельного типа.

    Нередко пациенту трудно сделать выбор между проведением исследования на низкопольном или высокопольном аппаратах. Но между низкопольными и высокопольными аппаратами существует значительная разница.

    Открытые (низкопольные) сканеры дают низкое качество изображений, и некоторые исследования для уточнения диагноза приходится повторять после низкопольных аппаратов на высокопольных аппаратах. Высокопольные МРТ аппараты с напряженностью магнитного поля (1 — 1,5-3.0 Тесла) обеспечивают высокое разрешение, которое позволяет визуализировать более детально структуру органов и тканей. Низкопольные аппараты МРТ обычно имеют мощность магнитного поля от 0.23 до 0.5 Тесла . Чем выше напряженность магнитного поля, тем лучше визуализация и более быстрее происходит сканирование. Существует прямая пропорция между увеличением мощности магнитного поля и качеством визуализации тканей .

    МР аппараты сканируют тело слоями (срезами). Чем выше магнитное поле, тем срезы тоньше, что позволяет получить более детальную морфологическую картину тканей и, таким образом, более точно поставить диагноз.

    Высокопольные МРТ требуют меньше времени на проведение исследования, благодаря более высокому магнитному полю. Высокопольные МРТ сканируют тело в полтора-два раза быстрее, чем аппараты низкопольные (открытого типа). Это очень важно, так как при длительном исследовании вероятность движения пациента и появления артефактов изображения увеличивается.

    Высокопольные МРТ аппараты обеспечивают самые передовые методы визуализации, некоторые из которых не могут быть выполнены на аппаратах с низким магнитным полем.

    Высокопольные аппараты МРТ постоянно совершенствуются для обеспечения большего комфорта для пациента и уменьшение беспокойства пациента во время проведения исследования. В последние годы были разработаны новые МРТ сканеры с существенно более короткой трубкой, что позволяет голове пациента быть снаружи отверстия магнита при выполнении ряда исследований. Отверстие магнита расширено в конце трубки, что уменьшает у пациента чувство замкнутого пространства, потому что голова пациента находится на пути к расширенному концу. Кроме того, отверстие имеет большую ширину, чем у более ранее сконструированных сканеров, что обеспечивает больше пространства вокруг пациента во время проведения исследования.

    Тем не менее, у высокопольных аппаратов есть несколько минусов:

    1. Клаустрофобия. Небольшой процент пациентов боятся замкнутого пространства и не могут находиться внутри высокопольного аппарата. Подавляющему большинству этих пациентов бывает достаточно принять легкое седативное до проведения исследования .Но при наличии выраженной клаустрофобии проведение исследования на аппаратах туннельного типа таким пациентам бывает весьма затруднительно .
    2. Размер. МРТ-аппараты высокопольные имеют ограниченное пространство, и некоторые пациенты из-за больших размеров тела могут быть слишком велики, чтобы уместиться в туннеле МРТ аппарата. Некоторые высокопольные МРТ имеют также ограничения по весу.
    3. Боль. Если у пациента имеется сильный болевой синдром в спине, в шее или другие симптомы то это затрудняет возможность пациента лежать неподвижно в течение длительного периода.

    Поэтому, низкопольные (открытого типа) аппараты МРТ могут быть более подходящим для некоторых пациентов, например, с истинной клаустрофобией или с большими размерами тела.

    Источник: http://trauma.ru/content/articles/detail.php?ELEMENT_ID=15291

    Как работает аппарат МРТ – метод диагностики, схема и принцип действия томографа

    Среди современных методов обследования особое внимание необходимо уделить тому, как работает МРТ. Для неосведомленных пациентов такая диагностика кажется пугающей, что породило кучу мифов о томографии. Сам томограф похож на капсулу необычного прибора, непонятны процессы проходящие внутри. Всё неизвестное вызывает сомнение, поэтому пациенты не всегда соглашаются пройти диагностику на томографе. Но это в корне неправильно! Полная и детальная информация, полученная с помощью магнитно-резонансной томографии необходима для точной постановки диагноза и выработки правильной схемы лечения. При этом воздействие томографа абсолютно безопасно для организма!

    Суть метода диагностики

    Изобретение магнитно-резонансного сканирования стало прорывом в диагностике. До этого увидеть все органы так чётко можно было только при вскрытии человека после его смерти. Томография позволила определять скорость движения крови по сосудам, состояние костной, хрящевой ткани, активность головного мозга. Все внутренние органы, включая позвоночник, молочные железы, зубы, носовые пазухи можно рассмотреть и даже понять, как они работают, при проведении обследования на томографе.

    Принцип работы МРТ кроется в воздействии на ядра водорода, которые есть в любой клетке человека. Сразу после открытия этого явления (1973 год) оно называлось ядерно-магнитным резонансом. Но после аварии на Чернобыльской АЭС (1986 год) со словом «ядерный» начали складываться отрицательные ассоциации. Поэтому данный метод диагностики переименовали в МРТ, что не изменило его сути и того, как метод работает.

    Принцип действия магнитно-резонансного сканирования заключается в следующем – под влиянием сильного магнитного поля ядра водорода начинают двигаться, выстраиваются в одной очерёдности. По окончании действия магнита, когда он больше не работает, атомы приходят в движение, начинают колебаться все вместе, выделяя при этом энергию. Томограф фиксирует показания энергии, компьютерная программа их обрабатывает, выдавая трехмерную картинку органа. В этом состоит для МРТ принцип его работы.

    В результате обследования получается серия снимков, есть возможность воссоздать трёхмерное изображение проблемного участка, повернуть его со всех сторон, рассмотреть в любой плоскости. Это важно при обследовании, постановке диагноза.

    Принцип работы томографа основывается на колебании магнитных волн — никакого радиационного облучения

    Когда лучше делать томографию?

    При постановке диагноза не всегда назначают пройти МРТ. И дело не в том, что это дорогая процедура, возможно и бесплатное обследование. Для этого метода есть специальные направления использования. Томограф целесообразно применять при определении диагноза, перед хирургическим вмешательством для уточнения деталей операции, после её проведения для осмотра результатов. МРТ делают при длительном лечении для корректировки терапии и оценки эффективности проведённых процедур. Это безопасный способ обследования, его можно проводить при необходимости несколько раз в день.

    МРТ необходимо делать при диагностике следующих болезней:

    • формирование опухолей доброкачественного и злокачественного характера;
    • аневризмы сосудов кровеносной системы;
    • инфекции суставов и костной ткани;
    • болезни сердца и сосудов;
    • нарушения функций головного и спинного мозга;
    • патологии воспалительного характера, например, мочеполовой системы;
    • оценка оперативного лечения и химиотерапии при онкологии;
    • травмы внутренних органов и мягких тканей.

    Магнитно-резонансную томографию не назначают с целью разработки методов профилактики, а только по конкретно поставленной задаче для точного диагностирования.

    Альтернативные способы постановки диагноза

    Кроме магнитно-резонансного сканирования, существуют и другие методы диагностики – компьютерная томография, УЗИ, ЭЭГ. При этом выбрать между КТ и МРТ иногда бывает непросто, ведь работают они по-разному. Сравнение методов представлено в таблице.

    Магнитно-резонансная томография – МРТ

    Работает без радиации. Выявляет многие заболевания на ранних стадиях. Не производит облучения, поэтому может проводиться детям и беременным женщинам. В результате получаются точные детальные изображения.

    Есть ограничения к проведению, например, металлические включения в теле пациента. Томограф с ними плохо работает.

    Компьютерная томография – КТ

    Хорошо показывает состояние костной ткани. Нет противопоказаний по поводу металлических включений в теле, как при МРТ. Аппарат работает быстро.

    Человек получает ионизирующее облучение в процессе сеанса.

    Ультразвуковое исследование – УЗИ

    Нет противопоказаний к проведению данного обследования. Аппарат работает на основе резонансных волн.

    Этот метод не позволяет оценить состояние костной ткани, некоторых внутренних органов, например, желудка, лёгких. Данные не отличаются точностью, как при МРТ.

    Высокоточное обследование заболеваний головного мозга. Работает при любом диагнозе, поскольку не имеет противопоказаний.

    Не выявляет наличие опухолей, способ неточный, так как на результаты влияют эмоции пациента.

    Каждый метод диагностики, включая МРТ, имеет свои отрицательные и положительные стороны, поэтому используется в своей области медицины. Оптимальный вариант выбирается на основе того, как работает то или иное оборудование.

    Когда применяют контраст?

    Иногда перед проведением обследования в вену пациента вводится контрастное вещество. Это необходимо для получения на снимках более чёткого изображения некоторых участков. С ним МРТ работает более детализировано. Так бывает при диагностике опухолей. Контрастное вещество накапливается в новообразованиях и дополнительно подсвечивает их на изображениях. При диагностировании аневризмы сосудов контрастом вычерчивается целая схема кровеносной системы, по которой врачу легче выявить нарушения.

    Контрастным веществом при МРТ служит гадолиний. Он работает для подсветки кровеносных сосудов и выводится почками из организма, хорошо переносится пациентами, редко вызывает аллергическую реакцию. При его применении существуют определённые противопоказания. Поэтому перед введением препарата проводят пробы на его переносимость.

    Противопоказано применение контрастного вещества:

    • лицам с аллергической реакцией на гадолиний;
    • беременным и кормящим женщинам;
    • людям, больным сахарным диабетом;
    • пациентам с хроническими болезнями почек.

    Гадолиний после проведения процедуры томографии выводится через несколько часов через почки. Лишняя нагрузка на них может спровоцировать обострение хронических патологий. Именно поэтому при больных почках контрастом не пользуются.

    В каких случаях нельзя делать томографию?

    Существуют серьёзные ограничения для проведения магнитно-резонансного сканирования:

    • беременность на ранних сроках;
    • клаустрофобия;
    • психические нарушения, когда человек не может продолжительное время находиться в неподвижном положении, контролировать своё состояние;
    • металлические включения в теле пациента – штифты, клипсы на сосудах, скобы, протезы, спицы;
    • вживлённые электронные устройства, которые работают постоянно, их невозможно убрать при проведении томографии, например, кардиостимуляторы;
    • эпилепсия;
    • татуировки, выполненные краской с металлическими частицами;
    • тяжёлое физическое состояние пациента, например, постоянное нахождение на аппарате искусственного дыхания.

    При компьютерной томографии таких противопоказаний нет. Назначают её при невозможности сделать МРТ. Такое обследование подходит там, где не работает томограф.

    Металлические фрагменты в организме делают изображения нечёткими, их будет трудно расшифровывать. Электронные устройства ломаются под влиянием сильного магнита. В применении томографа нужно соблюдать ограничения, чтобы избежать таких неприятностей.

    Подготовка к обследованию

    Положительной стороной метода магнитно-резонансного сканирования является почти полное отсутствие подготовки к диагностике. Но врачи советуют за несколько дней перед сеансом томографии отказаться от употребления спиртных напитков и не кушать много тяжелой для ЖКТ пищи. Хотя это остаётся на уровне рекомендаций. Если будет использоваться контраст, то лучше плотно поесть. Это поможет избежать приступов тошноты.

    Перед процедурой нужно снять все металлические украшения, запонки, часы, очки, съёмные зубные протезы. На одежде не должно оставаться деталей из металла. В современных медицинских диагностических центрах выдают комплекты одноразовой одежды для обследования. Лучшее переодеться в неё. Если в своей одежде осталась незамеченная деталь из металла, то при обследовании головного мозга или шеи впоследствии может болеть голова от присутствия на одежде постороннего железного предмета.

    Устройство для сканирования представляет собой тоннель, в который въезжает стол с пациентом. Важно не двигаться при обследовании, тогда изображения получатся чёткими и качественными. Чтобы не произошло случайного шевеления конечностями, руки и ноги пациента закрепляют к столу мягкими ремнями.

    МРТ можно без вреда использовать для диагностики любого органа, процедура безболезненна

    Как проходит процедура?

    В тоннеле томографа пациент не будет чувствовать дискомфорт, процедура безболезненная. Иногда поступают жалобы на резкие, непривычные звуки, которые издаёт аппарат во время работы. В некоторых центрах выдают наушники с приятной музыкой или беруши, их можно взять и из дома. В руках у пациента будет кнопка связи с персоналом. Если человек почувствует себя плохо, нужно нажать на неё, сеанс томографии прервётся.

    Весь персонал находится в другой комнате, работает с компьютерами. Но пациент не остается один, за ним наблюдают через окно. Процедура магнитно-резонансной томографии вполне комфортная. В среднем сеанс длится 40 минут, с применением контрастного вещества немного дольше. Внутренний объём у аппарата МРТ достаточный. Человек не лежит там, как в узкой коробке. Ему хватает воздуха, и пространства. Психологическое состояние у здорового человека не страдает и остаётся в норме. Многим пациентам даже интересно опробовать такой метод диагностики и побывать в томографе, узнать, как именно он работает.

    Обработка результатов

    Для расшифровки изображений после МРТ нужны специалисты, которые по малейшим изменениям могут диагностировать патологии. Подготовка заключения занимает несколько дней, но первые выводы врач сообщает сразу. Резонансные участки видны на снимках чётко – это могут быть изменения внутренних органов, наличие жидкости (где её не должно быть). Такая патология говорит о внутреннем кровотечении или инфекции.

    Заключение лаборанта после магнитно-резонансной томографии является только перечислением увиденных изменений. Например, повреждение связок, наличие опухоли, изменение структуры, формы и размера кровеносных сосудов в определённом месте. Диагноз будет ставить врач, направивший на обследование. Не нужно самостоятельно пытаться определить болезнь по заключению. Для этого необходимы ещё дополнительные обследования и анализы.

    Источник: http://metod-diagnostiki.ru/magnitno-rezonansnaya-tomografiya/osobennosti-obsledovaniya/kak-rabotayet-mrt/

    МРТ – принцип диагностики и работы

    Метод МРТ (магнитно-резонансная томография), в настоящее время является единственным методом лучевой медицинской диагностики, имеющий уникальные возможности получения всех данных об организме пациента, с высокоточными сведениями о метаболизме, анатомии и физиологии тканей и органов.

    В период обследования на аппарате МРТ, создается серия снимков органов и тканей человека в различной проекции, которые после оценки и обработки медицинским специалистом дают возможность сделать достаточно точный вывод.

    Принцип работы МРТ

    МРТ – это способ получения послойного изображения тканей и органов человеческого организма при помощи феномена ЯМР (магнитно-ядерный резонанс).

    Магнитно-ядерный резонанс, считается физическим явлением, основанным на свойствах протонов (атомных ядер). В электромагнитном поле, с помощью радиочастотного импульса, происходит излучение энергии в виде сигнала, который в дальнейшем регистрируется и преобразуется в компьютерной системе.

    Метод ЯМР позволяет изучать человеческий организм благодаря насыщенности водородом тканей организма и особенностям их магнитных свойств. На основе векторного направления параметров протона, обычно имеющие две фазы расположенные противоположно, и их привязанности к магнитному моменту, можно установить, в какой проекции находится определенный атом водорода.

    Если в магнитное внешнее поле поместить протон, то магнитный момент (спин), будет иметь противоположное направление к магнитному моменту поля. При воздействии электромагнитным излучением, имеющим определенную частоту, на исследуемый участок организма, часть протонов меняют свое месторасположение, но вскоре возвращаются в исходное положение. В данный период компьютерная система сбора данных томографа, проводит регистрацию “расслабившихся” ранее возбужденных протонов.

    Подготовка к МРТ

    Следует подчеркнуть, что магнитное поле аппарата МРТ, сильнее земного магнитного поля враз. В связи с этим, при проведении диагностики соблюдаются все требования безопасности и строго учитываются противопоказания.

    Обследование требует заполнение анкеты, где указывают краткую информацию о себе, состоянии здоровья и возможные ограничения.

    Перед процедурой на аппарате МРТ, с себя снимают предметы одежды, которые содержат металл. Причем, в некоторых видах декоративных косметических средствах (например, тушь), содержатся примеси металлов, что определенно помешает созданию точной и правильной картины исследования. Поэтому косметика перед процедурой тщательно удаляется.

    Технология проведения МРТ

    В специальной комнате для исследования пациент располагается внутри трубы МРТ. Участок диагностики определяет врач назначивший процедуру.

    Время исследования – примерно двадцать минут. В данном периоде пациент должен находиться неподвижно, от чего будет зависеть качество снимков.

    За пациентом врач наблюдает через специальное окошко или при помощи видеокамеры. При необходимости, нажатием кнопки можно подать сигнал и поговорить с врачом через переговорное устройство.

    Существуют случаи, когда для получения точного результата, внутривенным способом вводится контрастное вещество. Побочные эффекты в данной процедуре отсутствуют.

    В течение тридцати минут пациент получает готовое заключение и снимки.

    В настоящее время практически каждому человеку известно о пользе диагностики заболеваний с помощью рентгенографии и компьютерной томографии. Порой без них невозможно вылечить человека, то есть установить точный диагноз.

    Источник: http://sibclinics.ru/princip-mrt

    Принцип работы аппарата МРТ

    Один из самых эффективных методов медицинского исследования – МРТ или магнитно-резонансная томография, позволяющая получить максимально точные сведения об анатомических особенностях организма пациента, обменных процессах, физиологии тканей и внутренних органов. С его появлением стало возможно детальное обследование головного мозга для диагностики заболеваний и дегенеративных поражений. Возможность определения локализации процесса и объема произошедших повреждений становится основным преимуществом данной процедуры при выявлении новообразований и исследовании сосудов.

    Что такое МРТ

    Магнитно-резонансная томография – это уникальная возможность получения высокоточных послойных изображений исследуемой области. Процедура проводится при помощи специального аппарат, действие которого на организм человека заключается в стимуляции радиоволн, создании сильного магнитного поля и регистрации ответного электромагнитного излучения организма. Результатом процесса становится построение изображения путем обработки поступающего сигнала на компьютере.

    В основе работы аппарата лежит принцип ЯМР с последующей обработкой полученных сведений специальными программами. МРТ установка обеспечивает создание сильного магнитного поля. Немаловажным фактором, объясняющим принцип работы устройства, является наличие в человеческом организме протонов (в химическом смысле это ядро атома водорода) . Магнитно-резонансный томограф позволяет поддерживать стабильное состояние магнетизма в теле пациента, при помещении его в силовое поле. Аппарат производит:

    стимуляцию организма при помощи радиоволн, способствуя смене стационарной ориентации заряженных частиц;

    остановку радиоволн и регистрацию электромагнитных излучений организма;

    обработку полученного сигнала и преобразование его в изображение.

    Полученная картинка не является фотографическим снимком обследуемого отдела или органа. Специалист получает высококачественное детализированное отображение радиосигналов, испускаемых телом пациента. МРТ диагностика полностью превосходит метод компьютерной томографии, поскольку в данном случае при проведении процедуры не применяется ионизирующее излучение, а используются безопасные для человеческого организма электромагнитные волны.

    История создания и принцип работы МРТ

    Годом создания данного метода считается 1973, а одним из отцов-основателей магнитно-резонансной томографии – Пол Лотербур. В одном из журналов им была опубликована статья, в которой подробно описывался феномен визуализации структур и органов при помощи использования магнитных и радиоволн.

    Это не единственный ученый, причастный к открытию МРТ – еще в 1946 году Феликс Блох и Ричард Пурселл, работающие в Гарварде, изучали физическое явление, в основе которого лежали свойства, присущие атомным ядрам (первичное поглощение получаемой энергии и последующее ее переизлучение. т.е. выделение с переходом к начальному состоянию). За это исследование ученые получили Нобелевскую премию (1952).

    Открытие Блоха и Пурселла стало своеобразным толчком к развитию теории по ЯМР. Необычное явление изучалось как химиками, так и физиками. Демонстрация первого компьютерного томографа, включающая в себя ряд испытаний, произошла в 1972 году. Результатом проведенного исследования стало обнаружение принципиально нового способа диагностики, позволяющего детально визуализировать важнейшие структуры организма.

    Далее Лотербуром был частично сформулирован принцип работы аппарата МРТ – работа ученого легла в основу исследований, проводимых до наших дней. В частности, в статье содержались следующие утверждения:

    Трехмерные проекции объектов получаются по спектрам ЯМР протонов воды из обследуемых структур, органов и т.д.

    Особое внимание уделялось наблюдению за злокачественными новообразованиями. Опыты, проведенные Лотербуром, показали: они существенно отличаются от здоровых клеток. Разница заключается в характеристиках полученного сигнала.

    В 70-е годы XX века началась новая эра развития МРТ-диагностики. В это время Ричардом Эрнстом было предложено проведение магнитно-резонансной томографии с использованием особого метода – кодирования (как частотного, так и фазового). Именно этим способом визуализации исследуемых областей и пользуются врачи в наши дни. В 1980 году был продемонстрирован снимок, на получение которого ушло около 5 минут. Уже через шесть лет длительность отображения снизилась – до пяти секунд. При этом качество картинки оставалось неизменным.

    В 1988 году был усовершенствован и метод ангиографии, позволяющий отобразить кровоток пациента без дополнительного ввода в кровь препаратов, выполняющих роль контраста.

    Развитие МРТ стало новой вехой в современной медицине. Эта процедура применяется в диагностике заболеваний:

    мозга (головного и спинного);

    молочных желез и т.д.

    Возможности открытого метода позволяют обнаруживать заболевания на ранних стадиях и выявлять патологии, требующие своевременного лечения или же немедленного операционного вмешательства. Томография, проведенная на современном оборудовании, дает возможность получить точное изображение органов, обследуемых структур и тканей, а также:

    собрать необходимую информацию о циркуляции спинномозговой жидкости;

    определять уровень активации областей коры головного мозга;

    проследить за газообменом в тканях.

    Метод МРТ выгодно отличается от других способов диагностики:

    Он не предполагает воздействия, осуществляемого при помощи хирургических инструментов.

    Магнитно-резонансная томография безопасна и высокоэффективна.

    Данная процедура относительно широко доступна и востребована при исследовании наиболее сложных случаев, требующих детальной визуализации происходящих в организме изменений.

    На видео ниже демонстрируются основные этапы функционирования современного томографа:

    Принцип работы МРТ (видео)

    Принцип работы магнитно-резонансного сканера (МРТ)

    Как проходит процедура? Человека помещают в специальный узкий тоннель, в котором он должен находиться в горизонтальном положении. В трубе на него воздействует сильное магнитное поле прибора. Исследование длится от 15 до 20 минут.

    Каждый обследуемый и выводимый на экран в виде изображения срез имеет свою толщину. Рассматриваемый способ отображения схож с технологией удаления всего, что располагается над слоем и под ним. При этом большую роль играют отдельные элементы объема и плоскости – части среза и структурные компоненты получаемого магнитно-резонансного снимка.

    Поскольку человеческое тело на 90% состоит из воды, происходит стимуляция протонов атомов водорода. Этот метод воздействия позволяет заглянуть в организм и диагностировать серьезные заболевания без физического вмешательства.

    Устройство аппарата МРТ

    Рассматриваемое современное оборудование состоит из следующих частей:

    прибор, генерирующий радиоимпульсы;

    системы, служащие для обработки поступающих данных.

    Далее мы рассмотрим работу некоторых элементов отдельно.

    Магнит

    Создает стабильное поле, характеризующееся однородностью и высокой напряженностью. Именно по последнему показателю оценивается мощность прибора. Напомним о том, что именно от нее зависит качество получаемого изображения и скорость проведения процедуры.

    В зависимости от напряженности все аппараты разделяются на следующие группы:

    Низкопольные – оборудование начального уровня, открытые, сила поля < 0.5 Tл.

    Среднепольные – показатели от 0,5-1 Тл.

    Высокопольные – отличаются высокой скоростью исследования, четким изображением даже при движении пациента во время обследования. Напряженность магнитного поля этих установок – 1-2 Тл.

    Сверхвысокопольные – более 2 Тл. Используются для исследовательских целей.

    Также выделяются следующие виды используемых магнитов:

    Постоянные – изготавливаются из сплавов, обладающих ферромагнитными свойствами. Преимущество таких элементов – их не нужно охлаждать, поскольку они не требуют энергии для поддержания однородного поля. Среди недостатков – большой вес используемой системы, низкая напряженность. Также подобные магниты чувствительны к температурным изменениям.

    Сверхпроводящие – катушка, изготовленная из специального сплава. Через нее могут пропускать большие токи. Результатом работы такого устройства становится создание сильного магнитного поля. Дополнением к конструкции идет система охлаждения. Минусы данного вида – повышенное потребление жидкого гелия при низких энергозатратах, большие расходы на эксплуатацию прибора, обязательное экранирование. Также велик риск выбрасывания охлаждающей жидкости из криостата при потере свойств сверхпроводимости.

    Принцип работы катушки в МРТ

    Эти элементы предназначены для повышения однородности магнитного поля. Пропуская через себя ток, они корректируют характеристики, компенсируя недостаточную гомогенность. Такие детали либо размещаются непосредственно в жидком гелии, либо не требуют охлаждения.

    Результатом работы градиентных катушек становится создание четкого изображения путем локализации сигнала и сохранения точного соответствия данных, полученных во время процедуры, и области, исследуемой врачом.

    Большое значение имеют мощность и скорость действия деталей – от этих показателей зависит разрешающая способность прибора, уровень шума в соотношении с сигналом и быстрота действия.

    Передатчик в МРТ: принцип работы элемента в системе томографа

    Данный прибор формирует радиочастотные колебания и импульсы (прямоугольной и сложной формы). Подобное преобразование позволяет добиться возбуждения ядер, повлиять на контраст изображения, выводимого на снимок. Сигнал от элемента поступает на переключатель, который, в свою очередь, воздействует на катушку, генерируя РЧ магнитное поле, влияющее на спиновую систему.

    Приемник

    Представляет собой отличающийся высокой чувствительностью и низким уровнем шума усилитель сигнала, работа которого происходит на сверхвысоких частотах. Регистрируемый отклик претерпевает изменения – преобразование из МГц в кГц (от высоких частот к низким).

    Запчасти для томографов

    За получение точного детализированного изображения отвечают и регистрирующие датчики, которые располагаются вокруг исследуемого органа пациента. Подобная процедура абсолютно безопасна: произведя излучение сообщенной энергии, протоны возвращаются в прежнее состояние.

    Качество проведенного обследования зависит не только от напряженности магнитного поля, но и от используемой катушки, применения контрастного вещества, особенностей диагностики и опыта специалиста, проводящего томографию.

    Преимущества подобной процедуры:

    возможность получения максимально точного изображения осматриваемого органа;

    повышение качества диагностики;

    безопасность для пациента.

    Томографы отличаются по силе создаваемого ими поля и «открытости» магнита. Чем больше мощность поля, тем быстрее проходит процедура сканирования и выше качество получаемого трехмерного изображения.

    Открытые аппараты МРТ имеют C-образную форму и являются оптимальным вариантом для обследования людей, страдающих выраженной клаустрофобией. Они создавались для проведения дополнительных процедур внутри магнита. Такой тип установок гораздо слабее закрытых томографов.

    Ещё статьи

    Хотите узнать больше или заказать

    Укажите ваше имя, номер телефона и дополнительную информацию по желанию,

    и мы свяжемся с вами и проконсультируем по всем вопросам.

    Источник: http://mrimrt.ru/stati/chto_takoe_mrt/

    Как работает аппарат МРТ (Магнитно-Резонансной Томографии)

    Одним из наиболее результативных способов медицинского обследования, является МРТ или магнитно-резонансная томография, дающая возможность обрести наиболее точную информацию об особенностях анатомии человеческого организма, эндокринной системы, возбудимости тканей, а также внутренних органов. Возможность определения локализации процесса и объема произошедших повреждений становится основным преимуществом процедуры МРТ при обнаружении злокачественных опухолей и обследования сосудов.

    Что представляет из себя МРТ?

    Магнитно-резонансная томография – это исключительный шанс получить точнейшие послойные изображения, области организма, которая исследуется. Процедура осуществляется посредством специализированного устройства, влияние которого, на человеческий организм, находится в стимулировании электромагнитных волн, образовании внушительного магнитного поля и фиксирования обратного электромагнитного сигнала от человеческого организма. Итогом, является выстраивание изображения, при помощи обрабатывания поступающего сигнала на компьютер.

    Магнитно-резонансный томограф, является аппаратом, дающим возможность достичь эффективнейшего диагностирования, определить метаморфозы в функционировании организма и осуществить высочайшее по точности изображение изучаемых органов, которое дает результаты, на порядок выше, нежели рентген, компьютерная томография или УЗИ. Магнитно-резонансная томография дает возможность обнаружить онкологические заболевания и перечень других не менее опасных болезней, а также замерить быстроту кровотока и течение спинномозговой жидкости.

    За основу функционирования МРТ, взят ЯМР принцип, с последовательным обрабатыванием приобретенной информации, специализированными программами. Томограф создает условия для возникновения сильнейшего магнитного поля. Существенным фактором, поясняющим суть работы томографа, является присутствие в организме человека протонов (из уроков химии, многим должно быть известно, что протон – это ядро атома водорода). Аппарат МРТ дает возможность содействовать неизменному состоянию магнетизма в теле человека, при его размещении внутри устройства. В результате чего, он осуществляет:

    • стимулирование организма с помощью электромагнитных волн, помогая смене стабильной направленности настроенных частиц;
    • приостановку электромагнитных волн и фиксацию тех же излучений, со стороны человеческого организма;
    • обрабатывание принятого сигнала и перестройка его в картинку (изображение).

    Итоговое изображение – это совсем не фотография или фото-негатив изучаемой части тела или органа. Радиосигналы преобразовываются в высококачественное изображение среза человеческого организма, на экране монитора. Доктора видят органы в разрезе. Магнитно-Резонансная Томография, является более точным и надежным методом диагностирования, нежели КТ (компьютерная томография), ведь при МРТ не осуществляется применение ионизирующего излучения, наоборот, применяются абсолютно безвредные для организма электромагнитные волны.

    История производства и особенности устройства аппарата МРТ

    Датой сотворения сего полезнейшего устройства, называют 1973 год, а одним из первых разработчиков, считается – Пол Лотербур. В одном из его трудов был четко описан факт изображения строений организма и органов, благодаря применению магнитных и радиоволн.

    Однако, Лотербур не единственный изобретатель, приложивший руку к изобретению МРТ. За 27 лет до этого, Ричард Пурселл и Феликс Блох, работая в Гарвардском Университете, испытывали явление, основой которого являлось качество, характерное для атомных ядер (изначальное вбирание энергии и ее последующее «отдавание», то есть отделение с возвращением к исходному состоянию). Спустя шесть лет, за свою работу, ученые были удостоены Нобелевской премии.

    Их открытие, стало, в определенном роде, прорывом для развития суждения по ЯМР.

    Удивительный феномен подвергался изучению многими ученными, не только физиками, но и математиками, и химиками. Показ первого Компьютерного Томографа, с перечнем опытов, был осуществлен в 1972 году. В результате, был выявлен новейший способ диагностирования, позволяющий подробно изображать наиболее важные структуры человеческого организма.

    Впоследствии, некто Лотербур, хоть и не в полной мере, но высказал принцип функционирования МРТ. Его работа стала толчком для развития и дальнейших исследований в данной отрасли.

    Немало времени уделяли надзору над недоброкачественными опухолями.

    Исследования, производящиеся Лотербуром, продемонстрировали: они кардинально разнятся со здоровыми клетками. Разница состоит в параметрах добываемого сигнала.

    И так, можно смело утверждать, что стартом новейшей эры развития диагностирования с помощью МРТ, являются семидесятые годы прошлого века. Именно в тот период времени, Ричард Эрнст, предложил осуществление МРТ с применением особенного метода – кодирования (и радиочастотного, и фазового). Метод, который был предложен тогда, используют доктора и в наши дни. В восьмидесятом году прошлого века было продемонстрировано изображение, на создание которого было затрачено всего 5 минут, а через шесть лет, это время составляло уже 5 секунд. Стоит отметить, что качество изображения при этом, не изменилось.

    Через 8 лет после первого изображения, внушительный рывок произошел и в ангиографии, дающей возможность показать кровоток человека без вспомогательного введения в кровь лекарств, выполняющих функцию контраста.

    Развитие данной отрасли стало историческим моментом для современной медицины.

    МРТ используется в диагностировании болезней:

    • позвоночника;
    • суставов;
    • головного и спинного мозга;
    • нижнего мозгового придатка;
    • внутренних органов;
    • парных молочных желез внешней секреции и так далее.

    Потенциал открытого метода, дает возможность выявлять болезни на начальных стадиях и находить аномалии, нуждающиеся в безотлагательном лечении или в неотложном хирургическом вмешательстве.

    Процедура МРТ, осуществленная на нынешнем ультрасовременном оборудовании, позволяет:

    • получить точнейшую визуализацию внутренних органов, тканей;
    • накопить нужные данные о вращении спинномозговой жидкости;
    • выявить уровень активности областей коры головного мозга;
    • отслеживать газообмен, происходящий в тканях.

    МРТ значительно и в лучшую сторону отличим от прочих методов диагностирования:

    • Он не предусматривает манипуляций с хирургическими инструментами;
    • Он эффективен и безопасен;
    • Процедура достаточно распространена, доступна и необходима при изучении наиболее серьезных случаев, нуждающихся в подробном изображении случающихся в организме метаморфоз.

    Принцип работы Магнитно-Резонансного Томографа (МРТ)

    Процедура производится следующим образом. Пациента размещают в специализированное узкое углубление (своего рода тоннель), в котором он обязательно должен быть размещен горизонтально. Длительность процедуры составляет от четверти до половины часа.

    По завершении процедуры, человеку на руки отдают изображение, которое формируется с помощью ЯМР метода – физического явления магнитного и ядерного резонанса, связанного с особенностями протонов. Благодаря радиочастотному импульсу, в образованном при помощи аппарата электромагнитном поле преобразуется излучение, превращающееся в сигнал. Затем он принимается и подвергается обработке специализированной программой для компьютера.

    Каждый изучаемый и выводящийся на монитор, в виде визуализации, срез, обладает индивидуальной толщиной. Этот метод отображения похож на технологию удаления всего лишнего над или под слоем. Немаловажную роль, при этом, выполняют конкретные элементы объема и части среза.

    Из-за того, что тело человека на 90% состоит из жидкости, осуществляется стимулирование протонов атомов водорода. Метод МРТ, дает возможность взглянуть в организм и определить серьезность недуга без непосредственного физического вмешательства.

    Устройство МРТ

    Современный аппарат МРТ, состоит из таких частей:

    • магнит;
    • катушки;
    • генератор радиоимпульсов;
    • клетка Фарадея;
    • ресурс питания;
    • охладительная система;
    • системы, обрабатывающие получаемые данные.

    В последующих пунктах мы изучим работу части отдельных элементов аппарата МРТ!

    Магнит

    Производит стабилизированное поле, которое характеризуется равномерностью и внушительной эмфазой (напряженностью). Из заключительного показателя выявляется мощность устройства. Упомянем еще раз, именно от мощности зависит то, насколько высокое качество обретет визуализация после окончания терапии.

    Аппараты делятся на 4 группы:

    • Низкопольные – оснащение начального типа, сила поля менее 0.5 Тл;
    • Среднепольные – сила поля от 0,5-1 Тл;
    • Высокопольные – характеризуются великолепной скоростью обследования, хорошо просматриваемой визуализаций, даже если человек двигался при процедуре. Сила поля – 1-2 Тл;
    • Сверхвысокопольные – более 2 Тл. Применяются исключительно при исследованиях.

    Также стоит отметить такие разновидности применяемых магнитов:

    Постоянный магнит – производится из сплавов, имеющих, так называемые Ферромагнитные свойства. Плюсами данных элементов, являет то, что им нет необходимости понижать температуру, потому что им не нужно энергии для поддержки однородного поля. Из минусов, стоит отметить внушительную массу и незначительную напряженность. Кроме прочего, такие магниты, восприимчивы к изменениям температур.

    Сверхпроводимый магнит – катушка, созданная из особого сплава. Через данную катушку, происходит пропуск огромных токов. Благодаря аппаратам с подобными катушками, в них создается внушительное по силе магнитное поле. Однако, в сравнении с предыдущим магнитом, для сверхпроводимого магнита, необходима охладительная система. Из минусов, стоит отметить значительный расход жидкого гелия при незначительных затратах энергии, внушительные затраты на эксплуатирование агрегата, экранирование в обязательном порядке. Кроме прочего, существует риск выброса жидкости для охлаждения при утрате сверх проводимых свойств.

    Резистивный магнит – не нуждается в применении специализированных систем охлаждения, и могут производить относительно однородное поле для осуществления сложных испытаний. Из минусов, стоит отметить внушительную массу, составляющую около пяти тонн и повышающуюся в случае экранирования.

    Передатчик

    Вырабатывает колебания и импульсы радиочастот (формы прямоугольника и сложной). Данное изменение дает возможность достичь возбуждения ядер, улучшить контрастность картинки, получаемой в результате обработки данных. Сигнал передает на переключатель, который оказывает действие на катушку, образуя магнитное поле, обладающее влиянием на спиновую систему.

    Приемник

    Это усилитель сигнала с высочайшей чувствительностью и незначительным шумом, который работает на сверхвысоких частотах. Получаемый отзыв видоизменяется из мГц в кГц (то есть от больших частот, к меньшим).

    Прочие запчасти

    Для более подробной детализации картинки несут ответственность, также, датчики регистрации, расположенные около изучаемого органа. Процедура МРТ не представляет никакой опасности для человека, осуществив излучение сообщаемой энергии, протоны перетекают в изначальное состояние.

    Чтобы качество визуализации было лучше, исследуемому человеку могут ввести вещество контрастного типа на основе Gadolinium, которое не обладает побочными действиями. Вводится он при помощи шприца, который автоматизировано, подсчитывает необходимую дозу и быстроту введения препарата. Средство поступает в организм синхронно с протекающей процедурой.

    Качество МРТ исследования, зависит от большого количества факторов – это и состояние магнитного поля, катушка, которая применяется, какой контрастный препарат и даже доктор, проводящий процедуру.

    Преимущества МРТ:

    • высочайшая вероятность получить наиболее точную визуализацию исследуемой части тела или органа;
    • постоянно развивающееся качество диагностирования;
    • отсутствие негативных воздействий на человеческий организм;

    Аппараты разнятся по силе генерируемого поля и «распахнутости» магнита. Чем выше мощность, тем скорее проводится исследование и тем лучше качество визуализации.

    Открытые аппараты, обладают C-образной формой и считаются наилучшим для исследования людей, подверженных тяжелым формам клаустрофобии. Изначально они разрабатывались для осуществления вспомогательных внутри-магнитных процедур. Также, стоит отметить, что эта разновидность устройства значительно слабее, нежели закрытый аппарат.

    Обследование с помощью МРТ — одно из наиболее результативных и неопасных методов диагностирования и максимально информативно для подробного изучения спинного и головного мозга, позвоночника, органов брюшной полости и малого таза.

    Источник: http://kakustroen.ru/kak-rabotaet-apparat-mrt-magnitno-rezonansnoy-tomografii

    Принципы работы магнитно-резонансного томографа и устройство диагностического аппарата

    Новые диагностические методы в медицине дают возможность качественно обследовать пациента и выявлять серьезные заболевания, а также причины их возникновения на ранней стадии развития патологии. МРТ-сканирование позволяет продуктивно изучать любой участок человеческого организма, даже когда другие диагностические мероприятия (УЗИ, КТ, лабораторные исследования и т. д.) не находят никаких патологических отклонений.

    Что такое МРТ, и зачем назначают эту процедуру?

    Магнитно-резонансная томография – это неинвазивный радиологический метод диагностического исследования внутренних органов и систем, который базируется на применении энергии радиоволн и магнитного поля. Благодаря компьютерной обработке сведений, полученных в результате сольватации магнитных радиоволн с телом человека, появилась возможность визуализировать истинную картину исследуемых органов, тканей и структур. Данное обследование является абсолютно безопасным, поэтому его проводят даже детям.

    МРТ применяют для обследования всех участков человеческого организма, она особенно эффективна при диагностике различных патологий головного мозга, позвоночника и внутренних органов. По результатам данного диагностического исследования можно не только поставить точный диагноз и назначить эффективное лечение пациента, но и распознать даже несущественные дефекты в строении слизистых оболочек, мягких и костных тканей.

    Магнитно-резонансную томографию назначают довольно часто, вот некоторые показания к проведению обследования:

    • патологии головного и спинного мозга;
    • подозрение на формирование кист и опухолей в различных частях тела;
    • травмы и заболевания суставов, позвоночника (спазмы в коленях, пояснице, переломы, смещение дисков и т. д.);
    • проблемы с сердцем;
    • болезни внутренних органов;
    • стремительное падение зрения и слуха;
    • женское бесплодие и т. д.

    Кто изобрел томограф и придумал МРТ?

    Метод МРТ-сканирования приобрел широкое распространение и использование не так давно, но, несмотря на это, он имеет великую историю, которая тесно связана с математикой и физикой. Техническому воссозданию и применению магнитно-резонансного томографа предшествовал ряд научных событий, которые считаются фундаментальными, поэтому невозможно определить, кто из ученных вложил больший вклад в создание устройства. Все изобретения взаимосвязаны и оцениваются в совокупности:

    • 1882 г. — Никола Тесла было совершенно открытие вращающегося магнитного поля. В связи с этим, в 1956 г. в Германии было создано «Общество Тесла», которое приняло решение о присвоении названия единицы магнитного поля – «Тесла». В дальнейшем все приборы МРТ были откалиброваны таким образом.
    • 1937 г. — профессор из Колумбии Исидор И. Раби получил Нобелевскую премию за то, что описал квантовое явление — ядерно-магнитный резонанс (ЯМР). Ученый обнаружил, что ядра атомов при влиянии на них мощного магнитного поля меняют свое обычное положение за счет поглощения и излучения радиоволн.
    • 1973 г. — профессор Павел Лотербур воссоздал первое изображение ЯМР и подробно описал данное открытие.
    • В 1986 г. термин «ЯМР» переименовали в «МРТ» — это связано с аварией на Чернобыльской АЭС.
    • Ученый из Бруклина Раймонд Дамадиан выявил различия между сигналами водорода в здоровой и раковой тканях. В злокачественных образованиях содержится больше воды, а значит рудиментарные колебания радиоволн продолжаются дольше. Вместе со своими учениками – Лоуренсом Минкоффа и Майклом Голдсмитом — он придумал и изобрел переносные катушки для наблюдения за излучением водорода, а вскоре — и начальный аппарат МРТ.
    • 3 июля 1977 г. было проведено первое МРТ-сканирование человеческого тела на диагностическом приборе.

    Устройство аппарата для МРТ

    В современной медицине МРТ-сканеры имеют несколько разновидностей. Они бывают закрытого и открытого типа, низкопольными, средне- и высокопольными. Несмотря на различия, которые определяются визуально, строение любого аппарата МРТ идентично. Каждый томограф состоит из:

    1. Магнита — он образует константное магнитное поле, воздействующее на пациента.
    2. Градиентных катушек, которые обеспечивают маломощное переменное магнитное поле в средней области главного магнита. Такое поле названо градиентным, с его помощью можно выбрать конкретный участок для проведения исследования.
    3. Радиочастотных катушек, посылающих и принимающих определенные импульсы. Часть из них предназначена для формирования возбуждения в организме человека, другие — регистрируют ответную реакцию активизированных областей.
    4. Компьютера — он руководит работой катушек, регистрацией, обработкой извлеченной информации и ее реконструкцией в изображение.

    Принцип работы магнитно-резонансного томографа

    Принцип работы любого томографа базируется на явлении ядерно-магнитного резонанса (ЯМР). В теле человека находится большое количество молекул воды, они делятся на атомы водорода и кислорода. В центральной части отдельного атома водорода расположена макроскопическая частица – протон, который восприимчив к влиянию магнитного поля.

    В привычных обстоятельствах молекулы воды в человеческом организме располагаются беспорядочно, но при помещении исследуемого пациента в МРТ-сканер, они упорядочиваются в одном направлении. МРТ-томограф — это массивный тоннель, внутри которого расположен объемный магнит-цилиндр, а также типизированные датчики, фиксирующие особенности структуры тканей и органов. Пациента укладывают на специальный стол и после всех основных приготовлений помещают внутрь аппарата.

    Во время обследования вокруг тела человека создается сильное магнитное поле (в виде цикла кратковременных импульсов), оно воздействует на протоны атомов водорода, находящиеся в организме, тем самым изменяя их направленность на некоторое время, после чего происходит восстановление их местоположения.

    В результате изменения пространственного расположения активных атомов водорода совершается регистрация всех особенностей строения органов и тканей на исследуемом участке. Затем выполняется компьютерная обработка полученной информации (как и при КТ), и создается серия посрезовых снимков.

    Когда работает томограф, пациент не чувствует происходящих изменений. Процедура является абсолютно безвредной и по принципу действия отличается от КТ и рентгенологического обследования. На протяжении исследования фиксируются все изменения внутренних органов и систем, полученные сведения обрабатываются на компьютере и выводятся в виде изображений, которые подлежат оценке специалистом.

    Первое обследование пациента на МРТ-томографе было произведено в 1978 году, но данное исследование было направленно на выявление раковых образований у пациента с патологическими отклонениями.

    Спасибо за интересную информацию! А то все пугаются МРТ, полагая, что процедура пагубно влияет на организм. Тут нет вредных рентгеновских лучей, как при КТ, поэтому опасаться не стоит. Я уже несколько раз делала МРТ, это подробное исследование за умеренную плату.

    Внимание! Вся информация на сайте предоставляется исключительно в справочных целях и носит ознакомительный характер. По всем вопросам диагностики и лечения заболеваний необходимо обратиться к врачу за очной консультацией.

    Источник: http://uzimetod.ru/mrt/o-diagnostike/princip-raboty-mrt.html

    Разузнай! - Принцип работы МРТ - Что можно сделать с МРТ. Недостатки МРТ.

     

    Магнитно-резонансная томография (известна так же как МРТ) является несколько новым методом сканирования человеческих внутренних органов и начал действовать в восьмидесятых годах двадцатого века.

    Как известно, любой физический метод или концепция имеет сложную историю и проходит через несколько различных фаз развития, начиная с момента его возникновения. Изначально мало кто может подумать о возможности использования такого метода. Затем случается фаза развития такого явления, при которой претворение в жизнь немыслимого до селе метода становится возможным. Далее следует фаза небывалого взлета. Также случилось и с МРТ, который в виде парамагнитного резонанса открыл Е. Завойский в 1944 году, а также независимо от него – Парселл и Блох в 1946 году в форме резонансных явлений магнитных моментов в атомном ядре.

    МРТ отличается от компьютерной томографии, хотя и является также методом лучевой диагностики. Его отличие заключается в следующем. Главным образом это относится к излучению, которое применяется в томографии – диапазон радиоволны обычно составляет 1-300 м. Тогда почему же МРТ и КТ сравнивают друг с другом? Дело в том, что эти методы диагностирования используют абсолютно одинаковые  принципы автоматического сканирования, управляемого компьютером, а также получения и обработки послойных изображений внутренней структуры органа. 

    Преимущества МРТ

    Преимущества МРТ заключаются в следующих факторах:

    • использование радиоволн, а не рентгеновских лучей. Благодаря этому снимаются те или иные противопоказания (запрет на допуск к исследованиям беременных женщин и детей), потому что здесь не существует такое явление как лучевая нагрузка не исследуемого и врача. Также нет необходимости устанавливать специальную защиту окружающей среды и персонала от рентгеновских лучей;
    • чувствительность к находящимся в мягких тканях некоторым изотопам и, главное, к водороду. От этого качество и контрастность получаемого изображения повышается благодаря разной концентрации водорода в тех или иных тканях и органах. К тому же, фон костных тканей на картинке не мешает исследованию, так как в них концентрация водорода более низкая, нежели в окружающих тканях;
    • чувствительность к тем или иным химическим связям у молекул, что также повышает контрастность и улучшает качество картинки;
    • изображение сосудистого русла при отсутствии дополнительного контрастирования, а также с возможностью определять параметры кровотока;
    • большая разрешающая способность исследования. Возможность видеть объекты размерами в доли миллиметра;
    • возможность получать изображения как продольных слоев, так и поперечных.

    Недостатки МРТ

    Но МРТ также имеет и свои недостатки, как и любой другой метод диагностики. Сюда относится:

    • необходимость создавать магнитное поле большой напряженности, что расходует большое количество электроэнергии для работы оборудования. Также требуется использовать дорогие технологии, чтобы обеспечить сверхпроводимость;
    • низкая чувствительность по сравнению с рентгенологическим методом, при которой требуется увеличивать время просвечивания. Из-за этого могут появляться искажения на картинке при дыхательных движениях, что уменьшает эффективность изучения сердца и легких;
    • неспособность эффективно выявлять кальцификаты, камни, некоторые виды патологий в костных структурах;
    • невозможность исследовать контингент пациентов с определенными заболеваниями или характеристиками. Это может быть боязнь закрытых помещений (клаустрофобия), наличие крупных металлических имплантатов и так далее. Если беременность является относительным противопоказанием, то кардиостимуляторы – абсолютным.

    Но, как было сказано выше, развитие той или иной методики проходит через множество фаз, поэтому не исключено и то, что в будущем многие недостатки МРТ могут быть устранены. 

    Принцип действия МРТ

    Физическая и техническая суть МРТ в следующем. Ядерный магнитный резонанс – это возможность вещества (т.е. организма человека в нашем случае) избирательно поглощать радиоволны благодаря ядрам с ненулевым магнитным моментом. Нейтроны и протоны таких ядер во внешнем магнитном поле меняются по своему энергетическому состоянию. Благодаря очень малому расстоянию и переходу между такими уровнями энергии может возникнуть радиоизлучение. В сравнении с рентгеновскими лучами радиоволны имеют в миллиарды раз меньшую энергию, что не наносит того или иного повреждения молекулам. После поглощения радиоволн организмом, испускания их ядрами и перехода на более низкий энергетический уровень это можно зафиксировать путем изучения спектров излучения ядер и поглощения. Величина магнитного поля и другие факторы влияют на такие спектры. Чтобы получить изображение в МРТ используется передатчик в виде антенны и приемник радиоволн, в то время как в КТ источником служит лучевое излучение, а приемником – датчик. Напряженность магнитного поля изменяют в разных точках, что меняет длину волны передачи и приема сигнала. Если в заданной точке величина напряженности поля известна, то можно рассчитать и радиосигнал передачи-приема. Другими словами антенна без ее перемещения настраивается на тот или иной орган, после чего снимаются показания с точек благодаря изменению частоты приема волны. На следующем этапе происходит компьютерная обработка информации и формирование трехмерного изображения тканей и органов в высоком качестве. 


    Смотрите также