Красные клетки крови это


КРОВЬ

Кровь — это вязкая жидкость красного цвета, которая течет по кровеносной системе: состоит из особого вещества — плазмы, переносящей по всему организму различные виды оформленных элементов крови и множество других веществ.

• Снабжать кислородом и питательными веществами весь организм. • Переносить продукты метаболизма и токсичные вещества к органам, ответственным за их нейтрализацию. • Переносить гормоны, вырабатываемые эндокринными железами, к тканям, для которых они предназначены. • Принимать участие в терморегуляции организма.

• Взаимодействовать с иммунной системой.

- Плазма крови. Это жидкость, на 90 % состоящая из воды, переносящая все элементы, присутствующие в крови, по сердечно-сосудистой системе: кроме того что ппазма переносит кровяные клетки, она также снабжает органы питательными веществами, минералами, витаминами, гормонами и другими продуктами, задействованными в биологических процессах, и уносит продукты метаболизма. Некоторые из этих веществ сами свободно переносятся ппазмой, но многие из них нерастворимы и переносятся лишь вместе с белками, к которым присоединяются, и разделяются лишь в соответствующем органе.

- Кровяные клетки. Рассматривая состав крови, вы увидите три вида кровяных клеток: красные кровяные тельца, по цвету такие же, как кровь, основные элементы, придающие ей красный цвет; белые кровяные тельца, отвечающие за множество функций; и тромбоциты, самые маленькие кровяные клетки.

Красные кровяные тельца, также называемые эритроцитами или красными кровяными пластинками, — довольно крупные кровяные клетки. Они имеют форму двояковогнутого диска и диаметр около 7,5 мкм, в действительности они не являются клетками как таковыми, поскольку в них отсутствует ядро; живут эритроциты около 120 дней. Эритроциты содержат гемоглобин — пигмент, состоящий из железа, благодаря которому кровь имеет красный цвет; именно гемоглобин ответствен за основную функцию крови — перенос кислорода от легких к тканям и продукта метаболизма — углекислого газа — от тканей к легким.

Красные кровяные тельца под микроскопом.

Если поставить в ряд все красные кровяные тельца взрослого человека, то получится более двух триллионов клеток (4,5 млн на мм3 умноженные на 5 л крови), их можно будет 5,3 раза разместить вокруг экватора.

Белые кровяные тельца, также называемые лейкоцитами, играют важную роль в иммунной системе, защищающей организм от инфекций. Различают несколько видов белых кровяных телец; все они имеют ядро, включая некоторые многоядерные лейкоциты, и характеризуются сегментированными ядрами причудливой формы, которые видны под микроскопом, поэтому лейкоциты разделяют на две группы: полиядерные и моноядерные.

Полиядерные лейкоциты также называют гранулоцитами, поскольку под микроскопом можно разглядеть в них несколько гранул, в которых находятся вещества, необходимые для выполнения определенных функций. Различают три основных типа гранулоцитов:

- Нейтрофилы, которые поглощают (фагоцитируют) и перерабатывают болезнетворные бактерии; - Эозинофилы, обладающие антигистаминными свойствами, при аллергии и паразитических реакциях их численность возрастает; - Базофилы, которые выделяют особый секрет при аллергических реакциях.

Остановимся подробнее на каждом из трех типов гранулоцитов. Рассмотреть гранулоциты и клетки описания которых последуют далее в статье можно на схеме 1, приведенной ниже. Схема 1. Клетки крови: белые и красные кровяные тельца, тромбоциты.

Нейтрофильные гранулоциты (Гр/н) — это подвижные сферические клетки диаметром 10—12 мкм. Ядро сегментированное, сегменты соединяются тонкими гетерохроматиновыми мостиками. У женщин может быть виден маленький удлиненный отросток, называемый барабанной палочкой (тельце Барра); он соответствует неактивному длинному плечу одной из двух Х-хромосом. На вогнутой поверхности ядра располагается крупный комплекс Гольджи; другие органеллы развиты слабее. Характерным для этой группы лейкоцитов является наличие клеточных гранул. Азурофильные, или первичные, гранулы (АГ) рассматриваются как первичные лизосомы с того момента, когда они уже содержат кислую фосфатазу, арилеульфатазу, В-галактозидазу, В-глюкоронидазу, 5-нуклеотидазу d-аминооксидазу и пероксидазу. Специфические вторичные, или нейтрофильные, гранулы (НГ) содержат бактерицидные вещества лизоцим и фагоцитин, а также фермент — щелочную фосфатазу. Нейтрофильные гранулоциты являются микрофагами, т. е. поглощают маленькие частички, такие как бактерии, вирусы, мелкие части разрушающихся клеток. Эти частички попадают внутрь тела клетки посредством захвата их короткими клеточными отростками, а затем разрушаются в фаголизосомах, внутрь которых азурофильные и специфические гранулы освобождают свое содержимое. Жизненный цикл нейтрофильных гранулоцитов около 8 дней.

Эозинофильные гранулоциты (Гр/э) — клетки, достигающие в диаметре 12 мкм. Ядро двудольное, комплекс Гольджи располагается вблизи вогнутой поверхности ядра. Клеточные органеллы хорошо развиты. Помимо азурофильных гранул (АГ), цитоплазма включает эозинофильные гранулы (ЭГ). Они имеют эллиптическую форму и состоят из тонкозернистого осмиофильного матрикса и единичных или множественных плотных пластинчатых кристаллоидов (Кр). Лизосомальные энзимы: лактоферрин и миелопероксидаза — сконцентрированы в матриксе, в то время как крупный основной белок, токсичный для некоторых гельминтов, располагается в кристаллоидах.

Базофильные гранулоциты (Гр/б) имеют диаметр около 10—12 мкм. Ядро почковидное или разделено на два сегмента. Клеточные органеллы плохо развиты. Цитоплазма включает в себя мелкие редкие пероксидазоположительные лизосомы, которые соответствуют азурофильным гранулам (АГ), и крупные базофильные гранулы (БГ). Последние содержат гистамин, гепарин и лейкотриены. Гистамин является сосудорасширяющим фактором, гепарин действует как антикоагулянт (вещество угнетающее активность свёртывающей системы крови и препятствующее образованию тромбов), а лейкотриены вызывают сужение бронхов. Эозинофильный хемотаксический фактор имеется также в гранулах, он стимулирует накопление эозинофильных гранул в местах аллергических реакций. Под воздействием веществ, вызывающих освобождение гистамина или IgE, в большинстве аллергических и воспалительных реакций может наступить дегрануляция базофилов. В связи с этим некоторые авторы полагают, что базофильные гранулоциты идентичны тучным клеткам соединительных тканей, хотя последние не имеют пероксидазоположительных гранул.

Выделяют два типа моноядерных лейкоцитов: - Моноциты, которые фагоцитируют бактерии, детриты и другие вредные элементы; - Лимфоциты, вырабатывающие антитела (В-лимфоциты) и атакующие агрессивные вещества (Т-лимфоциты).

Моноциты (Мц) — самые крупные из всех форменных элементов крови, размером около 17—20 мкм. Крупное почкообразное эксцентричное ядро с 2—3 ядрышками располагается в объемной цитоплазме клетки. Комплекс Гольджи локализуется вблизи вогнутой поверхности ядра. Клеточные органеллы развиты слабо. Азурофильные гранулы (АГ), т. е. лизосомы, разбросаны внутри цитоплазмы.

Моноциты представляют собой очень подвижные клетки с высокой фагоцитарной активностью. С момента поглощения таких крупных частиц, как целые клетки или крупные части распавшихся клеток, они называются макрофагами. Моноциты регулярно покидают кровоток и проникают в соединительную ткань. Поверхность моноцитов может быть, как гладкой, так и содержащей в зависимости от клеточной активности псевдоподии, филоподии, микроворсинки. Моноциты вовлечены в иммунологические реакции: участвуют в процессинге поглощенных антигенов, активации Т-лимфоцитов, синтезе интерлейкина и выработке интерферона. Продолжительность жизни моноцитов 60—90 дней.

Белые кровяные тельца, помимо моноцитов, существуют в виде двух функционально различных классов, называемых Т- и В-лимфоцитами, которые невозможно различить морфологически, на основе обычных гистологических методов исследования. С морфологической точки зрения различают юные и зрелые лимфоциты. Крупные юные В- и Т-лимфоциты (КЛ) размером 10-12 мкм, содержат, помимо круглого ядра, несколько клеточных органелл, среди которых есть небольшие азурофильные гранулы (АГ), расположенные в относительно широком цитоплазматическом ободке. Крупные лимфоциты рассматриваются как класс так называемых естественных киллеров (клетки-убийцы).

Зрелые В- и Т-лимфоциты (Л) диаметром 8—9 мкм, имеют массивное шаровидное ядро, окруженное тонким ободком цитоплазмы, в которой можно наблюдать редкие органеллы, включая азурофильные гранулы (АГ). Поверхность лимфоцитов может быть гладкой или усеянной множеством микроворсинок (Мв). Лимфоциты — амебоидные клетки, свободно мигрирующие через эпителий кровеносных капилляров из крови и проникающие в соединительную ткань. В зависимости от типа лимфоцитов продолжительность их жизни варьирует от нескольких дней до нескольких лет (клетки памяти).

Цветные лейкоциты под электронным микроскопом.

Тромбоциты — корпускулярные элементы, являющиеся мельчайшими частицами крови. Тромбоциты — неполные клетки, их жизненный цикл составляет всего до 10 дней. Тромбоциты сосредотачиваются в местах кровотечений и принимают участие в свертывании крови.

Тромбоциты (Т) — веретеновидные или дисковидные двояковыпуклые фрагменты цитоплазмы мегакариоцита диаметром около 3-5 мкм. Тромбоциты имеют немного органелл и два типа гранул: а-гранулы (а), содержащие несколько лизосомальных ферментов, тромбопластин, фибриноген, и плотные гранулы (ПГ), которые имеют весьма конденсированную внутреннюю часть, содержащую аденозиндифосфат, ионы кальция и несколько видов серотонина.

Тромбоциты под электронным микроскопом.

Красные и белые клетки крови

Кровь человека – это жидкая субстанция, состоящая из плазмы и находящихся в ней во взвешенном состоянии форменных элементов, или клеток крови, которые составляют примерно% от общего объема.

Оглавление:

Они имеют малые размеры, и рассмотреть их можно только под микроскопом.

Все клетки крови делятся на красные и белые. Первые – это эритроциты, составляющие большую часть всех клеток, вторые – лейкоциты.

К клеткам крови принято причислять и тромбоциты. Эти небольшие кровяные пластинки на самом деле не являются полноценными клетками. Они представляют собой мелкие фрагменты, отделившиеся от крупных клеток – мегакариоцитов.

Эритроциты

Эритроциты называются красными кровяными тельцами. Это самая многочисленная группа клеток. Они переносят кислород от органов дыхания к тканям и принимают участие в транспортировке углекислого газа от тканей к легким.

Место образование эритроцитов – красный костный мозг. Живут они 120 дней и разрушаются в селезенке и печени.

Образуются из клеток-предшественниц – эритробластов, которые перед превращением в эритроцит проходят разные стадии развития и несколько раз делятся. Таким образом, из эритробласта образуется до 64 красных кровяных клеток.

Эритроциты лишены ядра и по форме напоминают вогнутый с двух сторон диск, диаметр которого в среднем составляет около 7-7,5 мкм, а толщина по краям – 2,5 мкм. Такая форма способствует увеличению пластичности, необходимой для прохождения по мелким сосудам, и площади поверхности для диффузии газов. Старые эритроциты утрачивают пластичность, из-за чего задерживаются в мелких сосудах селезенки и там же разрушаются.

Большая часть эритроцитов (до 80 %) имеет двояковогнутую сферическую форму. Остальные 20 % могут иметь другую: овальную, чашеобразную, сферическую простую, серповидную и пр. Нарушение формы связано с различными заболеваниями (анемией, дефицитом витамина B12, фолиевой кислоты, железа и др.).

Большую часть цитоплазмы эритроцита занимает гемоглобин, состоящий из белка и гемового железа, которое придает крови красный цвет. Небелковая часть представляет собой четыре молекулы гема с атомом Fe в каждой. Именно благодаря гемоглобину эритроцит способен переносить кислород и выводить углекислый газ. В легких атом железа связывается с молекулой кислорода, гемоглобин превращается в оксигемоглобин, придающий крови алый цвет. В тканях гемоглобин отдает кислород и присоединяет углекислый газ, превращаясь в карбогемоглобин, в результате кровь становится темной. В легких углекислый газ отделяется от гемоглобина и выводится легкими наружу, а поступивший кислород вновь связывается с железом.

Кроме гемоглобина, в цитоплазме эритроцита содержатся различные ферменты (фосфатаза, холинэстеразы, карбоангидраза и др.).

Оболочка эритроцита имеет достаточно простое строение, по сравнению с оболочками других клеток. Она представляет собой эластичную тонкую сетку, что обеспечивает быстрый газообмен.

В крови здорового человека в небольших количествах могут быть недозрелые эритроциты, которые называются ретикулоцитами. Их количество увеличивается при значительной кровопотере, когда требуется возмещение красных клеток и костный мозг не успевает их производить, поэтому выпускает недозрелые, которые тем не менее способны выполнять функции эритроцитов по транспортировке кислорода.

Лейкоциты

Лейкоциты – это белые клетки крови, основная задача которых – защищать организм от внутренних и внешних врагов.

Их принято делить на гранулоциты и агранулоциты. Первая группа – это зернистые клетки: нейтрофилы, базофилы, эозинофилы. Вторая группа не имеет гранул в цитоплазме, к ней относятся лимфоциты и моноциты.

Нейтрофилы

Это самая многочисленная группа лейкоцитов – до 70 % от общего числа белых клеток. Свое название нейтрофилы получили в связи с тем, что их гранулы окрашиваются красителями с нейтральной реакцией. Зернистость у него мелкая, гранулы имеют фиолетово-коричневатый оттенок.

Основная задача нейтрофилов – это фагоцитоз, который заключается в захвате болезнетворных микробов и продуктов распада тканей и уничтожении их внутри клетки с помощью лизосомных ферментов, находящихся в гранулах. Эти гранулоциты борются в основном с бактериями и грибами и в меньшей степени с вирусами. Из нейтрофилов и их остатков состоит гной. Лизосомные ферменты во время распада нейтрофилов высвобождаются и размягчают близлежащие ткани, формируя таким образом гнойный очаг.

Нейтрофил – это ядерная клетка округлой формы, достигающая в диаметре 10 мкм. Ядро может иметь вид палочки или состоять из нескольких сегментов (от трех до пяти), соединенных тяжами. Увеличение количества сегментов (до 8-12 и более) говорит о патологии. Таким образом, нейтрофилы могут быть палочкоядерными или сегментоядерными. Первые – это молодые клетки, вторые – зрелые. Клетки с сегментированным ядром составляют до 65 % от всех лейкоцитов, палочкоядерных в крови здорового человека – не более 5 %.

В цитоплазме находится порядка 250 разновидностей гранул, содержащих вещества, благодаря которым нейтрофил выполняет свои функции. Это молекулы белка, влияющие на обменные процессы (ферменты), регуляторные молекулы, контролирующие работу нейтрофилов, вещества, разрушающие бактерии и другие вредные агенты.

Образуются эти гранулоциты в костном мозге из нейтрофильных миелобластов. Зрелая клетка находится в мозге 5 дней, затем поступает в кровь и живет здесь до 10 часов. Из сосудистого русла нейтрофилы попадают в ткани, где находятся двое-трое суток, далее они попадают в печень и селезенку, где разрушаются.

Базофилы

Этих клеток в крови очень мало – не более 1 % от всего количества лейкоцитов. Они имеют округлую форму и сегментированное или палочкообразное ядро. Их диаметр достигает 7-11 мкм. Внутри цитоплазмы темно-фиолетовые гранулы разной величины. Название получили в связи с тем, что их гранулы окрашиваются красителями со щелочной, или основной (basic), реакцией. Гранулы базофила содержат ферменты и другие вещества, принимающие участие в развитии воспаления.

Их основная функция – выделение гистамина и гепарина и участие в формировании воспалительных и аллергических реакций, в том числе немедленного типа (анафилактический шок). Кроме этого, они способны уменьшить свертываемость крови.

Образуются в костном мозге из базофильных миелобластов. После созревания они попадают в кровь, где находятся около двух суток, затем уходят в ткани. Что происходит дальше до сих пор неизвестно.

Эозинофилы

Эти гранулоциты составляют примерно 2-5 % от общего числа белых клеток. Их гранулы окрашиваются кислым красителем – эозином.

У них округлая форма и слабо окрашенное ядро, состоящее из сегментов одинаковой величины (обычно двух, реже – трех). В диаметре эозинофилы достигаютмкм. Их цитоплазма окрашивается в бледно-голубой цвет и почти незаметна среди большого количества крупных круглых гранул желто-красного цвета.

Образуются эти клетки в костном мозге, их предшественники – эозинофильные миелобласты. В их гранулах содержатся ферменты, белки и фосфолипиды. Созревший эозинофил живет в костном мозге несколько дней, после попадания в кровь находится в ней до 8 часов, затем перемещается в ткани, имеющие контакт с внешней средой (слизистые оболочки).

Функция у эозинофила, как и у всех лейкоцитов, защитная. Эта клетка способна к фагоцитозу, хотя он и не является их главной обязанностью. Они захватывают болезнетворных микробов преимущественно на слизистых оболочках. В гранулах и ядре эозинофилов содержатся токсичные вещества, повреждающие мембрану паразитов. Их основная задача – защита от паразитарных инфекций. Кроме этого, эозинофилы принимает участие в формировании аллергических реакций.

Лимфоциты

Это круглые клетки с большим ядром, занимающим большую часть цитоплазмы. Их диаметр составляет 7 до 10 мкм. Ядро бывает круглым, овальным или бобовидным, имеет грубую структуру. Состоит их комков оксихроматина и базироматина, напоминающих глыбы. Ядро может быть темно-фиолетовым или светло-фиолетовым, иногда в нем присутствуют светлые вкрапления в виде ядрышек. Цитоплазма окрашена в светло-синий цвет, вокруг ядра она более светлая. В некоторых лимфоцитах цитоплазма имеет азурофильную зернистость, которая при окрашивании становится красной.

В крови циркулируют два вида зрелых лимфоцитов:

  • Узкоплазменные. У них грубое темно-фиолетовое ядро и цитоплазма в виде узкого ободка синего цвета.
  • Широкоплазменные. В этом случае ядро имеет более бледную окраску и бобовидную форму. Ободок цитоплазмы достаточно широкий, серо-синего цвета, с редкими аузурофильными гранулами.

Из атипичных лимфоцитов в крови можно обнаружить:

  • Мелкие клетки с едва просматривающейся цитоплазмой и пикнотическим ядром.
  • Клетки с вакуолями в цитоплазме или ядре.
  • Клетки с дольчатыми, почкообразными, имеющими зазубрины ядрами.
  • Голые ядра.

Образуются лимфоциты в костном мозге из лимфобластов и в процессе созревания проходят несколько этапов деления. Полное его созревание происходит в тимусе, лимфатических узлах и селезенке. Лимфоциты – это иммунные клетки, обеспечивающие иммунные реакции. Различают T-лимфоциты (80 % от общего числа) и B-лимфоциты (20 %). Первые прошли созревание в тимусе, вторые – в селезенке и лимфатических узлах. B-лимфоциты крупнее по размерам, чем T-лимфоциты. Продолжительность жизни этих лейкоцитов до 90 дней. Кровь для них – транспортная среда, посредством которой они попадают в ткани, где требуется их помощь.

Действия T-лимфоцитов и B-лимфоцитов различные, хотя и те, и другие принимают участие в формировании иммунных реакций.

Первые занимаются уничтожением вредных агентов, как правило, вирусов, путем фагоцитоза. Иммунные реакции, в которых они участвуют, являются неспецифической резистентностью, поскольку действия T-лимфоцитов одинаковы для всех вредных агентов.

По выполняемым действиям T-лимфоциты делятся на три вида:

  • T-хелперы. Их главная задача – помогать B-лимфоцитам, но в некоторых случаях они могут выполнять роль киллеров.
  • T-киллеры. Уничтожают вредных агентов: чужеродные, раковые и мутированные клетки, возбудителей инфекций.
  • T-супрессоры. Угнетают или блокируют слишком активные реакции B-лимфоцитов.

B-лимфоциты действуют иначе: против болезнетворных микроорганизмов они вырабатывают антитела – иммуноглобулины. Происходит это следующим образом: в ответ на действия вредных агентов они вступают во взаимодействие с моноцитами и T-лимфоцитами и превращаются в плазматические клетки, продуцирующие антитела, которые распознают соответствующие антигены и связывают их. Для каждого вида микробов эти белки специфические и способны уничтожить только определенный вид, поэтому резистентность, которую формируют эти лимфоциты, специфическая, и направлена она преимущественно против бактерий.

Эти клетки обеспечивают устойчивость организма к тем или иным вредным микроорганизмам, что принято называть иммунитетом. То есть, встретившись с вредоносным агентом, B-лимфоциты создают клетки памяти, которые эту устойчивость и формируют. Того же самого – формирования клеток памяти – добиваются прививками против инфекционных болезней. В этом случае вводится слабый микроб, чтобы человек легко перенес заболевание, и в результате образуются клетки памяти. Они могут остаться на всю жизнь или на какой-то определенный период, по истечении которого требуется прививку повторить.

Моноциты

Моноциты – самые крупные из лейкоцитов. Их количество составляет от 2 до 9 % от всех белых кровяных клеток. Их диаметр доходит до 20 мкм. Ядро моноцита крупное, занимает почти всю цитоплазму, может быть круглым, бобовидным, иметь форму гриба, бабочки. При окрашивании становится красно-фиолетовым. Цитоплазма дымчатая, синевато-дымчатая, реже синяя. Обычно она имеет азурофильную мелкую зернистость. В ней могут находиться вакуоли (пустоты), пигментные зерна, фагоцитированные клетки.

Моноциты производятся в костном мозге из монобластов. После созревания сразу оказываются в крови и находятся там до 4 суток. Часть этих лейкоцитов погибает, часть перемещается в ткани, где дозревают и превращаются в макрофагов. Это самые крупные клетки с большим круглым или овальным ядром, голубой цитоплазмой и большим числом вакуолей, из-за чего кажутся пенистыми. Продолжительность жизни макрофагов – несколько месяцев. Они могут постоянно находиться в одном месте (резидентные клетки) или перемещаться (блуждающие).

Моноциты образуют регуляторные молекулы и ферменты. Они способны формировать воспалительную реакцию, но также могут и тормозить ее. Кроме этого, они участвуют в процессе заживления ран, помогая ускорить его, способствуют восстановлению нервных волокон и костной ткани. Главная их функция – фагоцитоз. Моноциты уничтожают вредные бактерии и сдерживают размножение вирусов. Они способны выполнять команды, но не могут различать специфические антигены.

Тромбоциты

Эти клетки крови представляют собой маленькие безъядерные пластинки и могут иметь круглую или овальную форму. Во время активации, когда они находятся у поврежденной стенки сосуда, у них образуются выросты, поэтому они выглядят как звезды. В тромбоцитах есть микротрубочки, митохондрии, рибосомы, специфические гранулы, содержащие вещества, необходимые для свертывания крови. Эти клетки снабжены трехслойной мембраной.

Производятся тромбоциты в костном мозге, но совершенно другим путем, чем остальные клетки. Кровяные пластинки образуются из самых крупных клеток мозга – мегакариоцитов, которые, в свою очередь, образовались из мегакариобластов. У мегакариоцитов очень большая цитоплазма. В ней после созревания клетки появляются мембраны, разделяющие ее на фрагменты, которые начинают отделяться, и таким образом появляются тромбоциты. Они выходят из костного мозга в кровь, находятся в ней 8-10 дней, затем погибают в селезенке, легких, печени.

Кровяные пластинки могут иметь разные размеры:

  • самые мелкие – микроформы, их диаметр не превышает 1,5 мкм;
  • нормоформы достигают 2-4 мкм;
  • макроформы – 5 мкм;
  • мегалоформы – 6-10 мкм.

Тромбоциты выполняют очень важную функцию – они участвуют в формировании кровяного сгустка, который закрывает повреждение в сосуде, тем самым не давая крови вытекать. Кроме этого, они поддерживают целостность стенки сосуда, способствуют быстрейшему ее восстановлению после повреждения. Когда начинается кровотечение, тромбоциты прилипают к краю повреждения, пока отверстие не будет полностью закрыто. Налипшие пластинки начинают разрушаться и выделять ферменты, которые воздействуют на плазму крови. В результате образуются нерастворимые нити фибрина, плотно закрывающие место повреждения.

Заключение

Клетки крови имеют сложное строение, и каждый вид выполняет определенную работу: от транспортировки газов и веществ до выработки антител против чужеродных микроорганизмов. Их свойства и функции на сегодняшний день изучены не до конца. Для нормальной жизнедеятельности человека необходимо определенное количество каждого вида клеток. По их количественным и качественным изменениям медики имеют возможность заподозрить развитие патологий. Состав крови – это первое, что изучает врач при обращении пациента.

КРОВЬ

Кровь — это вязкая жидкость красного цвета, которая течет по кровеносной системе: состоит из особого вещества — плазмы, переносящей по всему организму различные виды оформленных элементов крови и множество других веществ.

ФУНКЦИИ КРОВИ:

• Снабжать кислородом и питательными веществами весь организм.

• Переносить продукты метаболизма и токсичные вещества к органам, ответственным за их нейтрализацию.

• Переносить гормоны, вырабатываемые эндокринными железами, к тканям, для которых они предназначены.

• Принимать участие в терморегуляции организма.

• Взаимодействовать с иммунной системой.

ОСНОВНЫЕ КОМПОНЕНТЫ КРОВИ:

— Плазма крови. Это жидкость, на 90 % состоящая из воды, переносящая все элементы, присутствующие в крови, по сердечно-сосудистой системе: кроме того что ппазма переносит кровяные клетки, она также снабжает органы питательными веществами, минералами, витаминами, гормонами и другими продуктами, задействованными в биологических процессах, и уносит продукты метаболизма. Некоторые из этих веществ сами свободно переносятся ппазмой, но многие из них нерастворимы и переносятся лишь вместе с белками, к которым присоединяются, и разделяются лишь в соответствующем органе.

— Кровяные клетки. Рассматривая состав крови, вы увидите три вида кровяных клеток: красные кровяные тельца, по цвету такие же, как кровь, основные элементы, придающие ей красный цвет; белые кровяные тельца, отвечающие за множество функций; и тромбоциты, самые маленькие кровяные клетки.

КРАСНЫЕ КРОВЯНЫЕ ТЕЛЬЦА

Красные кровяные тельца, также называемые эритроцитами или красными кровяными пластинками, — довольно крупные кровяные клетки. Они имеют форму двояковогнутого диска и диаметр около 7,5 мкм, в действительности они не являются клетками как таковыми, поскольку в них отсутствует ядро; живут эритроциты около 120 дней. Эритроциты содержат гемоглобин — пигмент, состоящий из железа, благодаря которому кровь имеет красный цвет; именно гемоглобин ответствен за основную функцию крови — перенос кислорода от легких к тканям и продукта метаболизма — углекислого газа — от тканей к легким.

Красные кровяные тельца под микроскопом.

Если поставить в ряд все красные кровяные тельца взрослого человека, то получится более двух триллионов клеток (4,5 млн на мм3 умноженные на 5 л крови), их можно будет 5,3 раза разместить вокруг экватора.

БЕЛЫЕ КРОВЯНЫЕ ТЕЛЬЦА

Белые кровяные тельца, также называемые лейкоцитами, играют важную роль в иммунной системе, защищающей организм от инфекций. Различают несколько видов белых кровяных телец; все они имеют ядро, включая некоторые многоядерные лейкоциты, и характеризуются сегментированными ядрами причудливой формы, которые видны под микроскопом, поэтому лейкоциты разделяют на две группы: полиядерные и моноядерные.

Полиядерные лейкоциты также называют гранулоцитами, поскольку под микроскопом можно разглядеть в них несколько гранул, в которых находятся вещества, необходимые для выполнения определенных функций. Различают три основных типа гранулоцитов:

— Нейтрофилы, которые поглощают (фагоцитируют) и перерабатывают болезнетворные бактерии;

— Эозинофилы, обладающие антигистаминными свойствами, при аллергии и паразитических реакциях их численность возрастает;

— Базофилы, которые выделяют особый секрет при аллергических реакциях.

Остановимся подробнее на каждом из трех типов гранулоцитов. Рассмотреть гранулоциты и клетки описания которых последуют далее в статье можно на схеме 1, приведенной ниже.

Схема 1. Клетки крови: белые и красные кровяные тельца, тромбоциты.

Нейтрофильные гранулоциты (Гр/н) — это подвижные сферические клетки диаметром 10—12 мкм. Ядро сегментированное, сегменты соединяются тонкими гетерохроматиновыми мостиками. У женщин может быть виден маленький удлиненный отросток, называемый барабанной палочкой (тельце Барра); он соответствует неактивному длинному плечу одной из двух Х-хромосом. На вогнутой поверхности ядра располагается крупный комплекс Гольджи; другие органеллы развиты слабее. Характерным для этой группы лейкоцитов является наличие клеточных гранул. Азурофильные, или первичные, гранулы (АГ) рассматриваются как первичные лизосомы с того момента, когда они уже содержат кислую фосфатазу, арилеульфатазу, В-галактозидазу, В-глюкоронидазу, 5-нуклеотидазу d-аминооксидазу и пероксидазу. Специфические вторичные, или нейтрофильные, гранулы (НГ) содержат бактерицидные вещества лизоцим и фагоцитин, а также фермент — щелочную фосфатазу. Нейтрофильные гранулоциты являются микрофагами, т. е. поглощают маленькие частички, такие как бактерии, вирусы, мелкие части разрушающихся клеток. Эти частички попадают внутрь тела клетки посредством захвата их короткими клеточными отростками, а затем разрушаются в фаголизосомах, внутрь которых азурофильные и специфические гранулы освобождают свое содержимое. Жизненный цикл нейтрофильных гранулоцитов около 8 дней.

Эозинофильные гранулоциты (Гр/э) — клетки, достигающие в диаметре 12 мкм. Ядро двудольное, комплекс Гольджи располагается вблизи вогнутой поверхности ядра. Клеточные органеллы хорошо развиты. Помимо азурофильных гранул (АГ), цитоплазма включает эозинофильные гранулы (ЭГ). Они имеют эллиптическую форму и состоят из тонкозернистого осмиофильного матрикса и единичных или множественных плотных пластинчатых кристаллоидов (Кр). Лизосомальные энзимы: лактоферрин и миелопероксидаза — сконцентрированы в матриксе, в то время как крупный основной белок, токсичный для некоторых гельминтов, располагается в кристаллоидах.

Базофильные гранулоциты (Гр/б) имеют диаметр около 10—12 мкм. Ядро почковидное или разделено на два сегмента. Клеточные органеллы плохо развиты. Цитоплазма включает в себя мелкие редкие пероксидазоположительные лизосомы, которые соответствуют азурофильным гранулам (АГ), и крупные базофильные гранулы (БГ). Последние содержат гистамин, гепарин и лейкотриены. Гистамин является сосудорасширяющим фактором, гепарин действует как антикоагулянт (вещество угнетающее активность свёртывающей системы крови и препятствующее образованию тромбов), а лейкотриены вызывают сужение бронхов. Эозинофильный хемотаксический фактор имеется также в гранулах, он стимулирует накопление эозинофильных гранул в местах аллергических реакций. Под воздействием веществ, вызывающих освобождение гистамина или IgE, в большинстве аллергических и воспалительных реакций может наступить дегрануляция базофилов. В связи с этим некоторые авторы полагают, что базофильные гранулоциты идентичны тучным клеткам соединительных тканей, хотя последние не имеют пероксидазоположительных гранул.

Выделяют два типа моноядерных лейкоцитов:

— Моноциты, которые фагоцитируют бактерии, детриты и другие вредные элементы;

— Лимфоциты, вырабатывающие антитела (В-лимфоциты) и атакующие агрессивные вещества (Т-лимфоциты).

Моноциты (Мц) — самые крупные из всех форменных элементов крови, размером около 17—20 мкм. Крупное почкообразное эксцентричное ядро с 2—3 ядрышками располагается в объемной цитоплазме клетки. Комплекс Гольджи локализуется вблизи вогнутой поверхности ядра. Клеточные органеллы развиты слабо. Азурофильные гранулы (АГ), т. е. лизосомы, разбросаны внутри цитоплазмы.

Моноциты представляют собой очень подвижные клетки с высокой фагоцитарной активностью. С момента поглощения таких крупных частиц, как целые клетки или крупные части распавшихся клеток, они называются макрофагами. Моноциты регулярно покидают кровоток и проникают в соединительную ткань. Поверхность моноцитов может быть, как гладкой, так и содержащей в зависимости от клеточной активности псевдоподии, филоподии, микроворсинки. Моноциты вовлечены в иммунологические реакции: участвуют в процессинге поглощенных антигенов, активации Т-лимфоцитов, синтезе интерлейкина и выработке интерферона. Продолжительность жизни моноцитов 60—90 дней.

Белые кровяные тельца, помимо моноцитов, существуют в виде двух функционально различных классов, называемых Т- и В-лимфоцитами, которые невозможно различить морфологически, на основе обычных гистологических методов исследования. С морфологической точки зрения различают юные и зрелые лимфоциты. Крупные юные В- и Т-лимфоциты (КЛ) размероммкм, содержат, помимо круглого ядра, несколько клеточных органелл, среди которых есть небольшие азурофильные гранулы (АГ), расположенные в относительно широком цитоплазматическом ободке. Крупные лимфоциты рассматриваются как класс так называемых естественных киллеров (клетки-убийцы).

Зрелые В- и Т-лимфоциты (Л) диаметром 8—9 мкм, имеют массивное шаровидное ядро, окруженное тонким ободком цитоплазмы, в которой можно наблюдать редкие органеллы, включая азурофильные гранулы (АГ). Поверхность лимфоцитов может быть гладкой или усеянной множеством микроворсинок (Мв). Лимфоциты — амебоидные клетки, свободно мигрирующие через эпителий кровеносных капилляров из крови и проникающие в соединительную ткань. В зависимости от типа лимфоцитов продолжительность их жизни варьирует от нескольких дней до нескольких лет (клетки памяти).

ТРОМБОЦИТЫ

Тромбоциты — корпускулярные элементы, являющиеся мельчайшими частицами крови. Тромбоциты — неполные клетки, их жизненный цикл составляет всего до 10 дней. Тромбоциты сосредотачиваются в местах кровотечений и принимают участие в свертывании крови.

Тромбоциты (Т) — веретеновидные или дисковидные двояковыпуклые фрагменты цитоплазмы мегакариоцита диаметром около 3-5 мкм. Тромбоциты имеют немного органелл и два типа гранул: а-гранулы (а), содержащие несколько лизосомальных ферментов, тромбопластин, фибриноген, и плотные гранулы (ПГ), которые имеют весьма конденсированную внутреннюю часть, содержащую аденозиндифосфат, ионы кальция и несколько видов серотонина.

Тромбоциты под электронным микроскопом.

ЛЕЙКОЦИТЫ — БЕЛЫЕ КЛЕТКИ КРОВИ.

Белокровие, лейкемия, лейкоцитоз — симптомы и лечение.

Кровь — единственная подвижная среда живого организма. Она омывает все наши ткани и органы, доставляет им кислород, питательные вещества, ферменты, уносит вредные продукты обмена, защищает нас от болезнетворных микробов. Все эти разнообразные сложнейшие физиологические функции осуществляются с помощью форменных элементов крови.

1 — базофильный лейкоцит

2 — сегментоядерный лейкоцит

3 — палочкоядерный лейкоцит

4 — мелкоклеточный лимфоцит

5 — эозофильный лейкоцит

9 — многоклеточный лимфоцит

Из клеток костного мозга развиваются нейтрофилы, базофилы, эозинофилы.

Нейтрофилы уничтожают микробов, проникших в организм. С помощью ложноножек нейтрофилы захватывают болезнетворные микроорганизмы и переваривают их. Базофилы и эозинофилы также принимают участие в борьбе с микробами.

В лимфатических узлах и в селезенке образуются лимфоциты. Самые крупные из белых кровяных клеток — моноциты развиваются в селезенке.

Основная роль лимфоцитов и моноцитов в крови — ликвидировать остатки погибших белых кровяных телец и микроорганизмов. Эти клетки — своеобразные «санитары», очищающие поле боя.

Белокровие (лейкоз, лейкемия) — опухолевая болезнь органов кроветворения, при котором разрастаются незрелые клетки в кроветворной ткани и других органов. Причинами белокровия могут быть радиационное излучение, влияние лейкозогенных химических веществ, а также внезапные лейкозы, причины которых до конца не выяснены.

Формы белокровия (лейкоза, лейкемии) бывают лейкемические ( при значительном количестве патологических лейкоцитов в крови (десятки и сотни тысяч вместо нормальныхтыс) в кубическом миллиметре крови, сублейкемические (до 25 тысяч лейкоцитов в крови), лейкопенические (количество в норме или уменьшено, но в составе есть больные лейкоциты) и алейкемические.

Острый лейкоз возникает и протекает быстро, ярко выражено прекращение кроветворения, и клетки невызревают – в крови присутствуют незрелые клетки – бласты, а количество зрелых лейкоцитов невелико, переходные формы отсутствуют. Острое белокровие характеризуется кровоточивостью, язвами и участками отмирания в некоторых органах, ярковыраженным малокровием. Если не лечить острый лейкоз, то наступает быстрая смерть.

Самая распространенная форма хронического лейкоза – хроническая миелоза (в зависимости от заболевания части кроветворной системы бывают еще лимфолейкозы (лимфаденозы), эритромиелозы, и др), при этом разрастаются элементы кроветворения и в крови наблюдается множество зернистых лейкоцитов. Хронические формы белокровия протекают длительно, увеличиваются лимфоузлы, печень и селезенка. Количество зрелых лейкоцитов ненормально велико, при обострениях наблюдаются незрелые формы – бласты. Нарушаются функции органов и систем организма, возникают опухоли и кровотечения, и при отсутствии лечения наступает смертельный исход.

Итак, белокровие (лейкоз, лейкемия) – это заболевание «белой» крови, т.е. лейкоцитов, они не вызревают и не способны выполнять свои функции по защите организма. Гранулоциты не уничтожают микробов и вирусов, лимфоциты не выводят их из организма (см. анализ крови).

Лечение белокровия (лейкоза, лейкемии)

Основные усилия при лечении лейкоза направлены на прекращение размножения невызревающих лейкоцитов (бластов) и их уничтожение (даже несколько бластов могут вызвать вспышку болезни).

Подавляется размножение незрелых лейкоцитов специальными препаратами, в том числе и гормональными препаратами, снижающими количество лейкоцитов, а так же посредством облучения. При обеих способах страдают и здоровые клетки, и организм тяжело переносит химиотерапию и лучевую терапию. Радикальным способом при повторных ремиссиях является пересадка костного мозга, успех достигается более чем в половине случаев.

Новое лекарство для лечения лейкемии (STI-571 или Glivec или Gleevec – разные названия лекарства) дает надежду многим больным с первой садией хронического миелолейкоза – более чем у 90% возникла ремиссия при лечении в течении 6 месяцев препаратом STI-571 или Glivec. Аномальный белок, продуцируемый измененной хромосомой, приводит к ненормальному росту количества лейкоцитов, а STI-571 или Glivec блокирует сигнал, высвобождающий белок и предотвращает образование и рост раковых клеток. STI-571 или Glivec или Gleevec – новый шаг к лечению раковых заболеваний.

Процедуры и лекарства при лечении белокровия

Для излечения лейкоза нужно избавиться от бластов, и при этом условии нормальные клетки будут родолжать свою деятельность. Лекарства от лейкемии, которые препятствуют делению клеток и носят названия цитостатических препаратов. Облучение – другой способ предотвращения деления клеток. Но оба эти метода неизбирательны – они препятствуют также делению нормальных клеток (побочное действие), и поэтому такое лечение переносится тяжело.

При лечении важно следить за побочными действиями и установить дозировку, при которой лейкозные клетки делятся минимально, а нормальные все еще могут размножаться. Поэтому в процессе лечения непрерывно исследуется моча, кровь, костный мозг и спинно-мозговая жидкость. При достижении нежелательного уровня побочных действий назначается перерыв в лечении.

Побочные явления возникают от недостатка нормальных лейкоцитов и других составляющих крови, организм не может перебороть различные воспалительные инфекции, поэтому назначаются соответствующие противовоспалительные лекарства. Также назначаются средства от рвоты, вызываемой цитостатическими препаратами. При нехватке кровяных телец производят переливание крови.

Цитостатические препараты сравнительно плохо проникают в некоторые области вокруг головного и спинного мозга, и для уничтожения скопившихся там бластов производится люмбальная пункция, в ходе которой лекарство вводится непосредственно в спинно-мозговую жидкость. Пункцию делают несколько раз. В кровь вводится метотрексат или алексан, они также проникают в спинно-мозговую жидкость. Для усвоения метотрексата назначают лейковорин. Возможно также применение облучения головной части в дополнительных дозах.

При интенсивном лечении число лейкоцитов падает, во рту могут образоваться открытые ранки, и поэтому его надо часто полоскать для предотвращения попадания инфекции специальными жидкостями.

После интенсивного этапа лечения в клинике наступает длительный – самочуствие улучшается, только каждый день принимаются таблетки, раз в неделю нужно приехать в клинику и обследоваться. Таким образом проверяется, не остались ли еще в организме бласты, избежавшие действия лечебных препаратов в период интенсивной терапии. При повторном обострении лейкемии нужно более интенсивное лечение для перехода к ремиссии. Применяются другие лекарства, также прибегают к пересадке костного мозга.

О процедурах.

Для исследования костного мозга проводится пункция – отбор костного мозга специальной пункционной иглой – протыкается кость и отбирается проба костного мозга, обычно из верхнего края тазовой кости. Предварительно делается обезболивающий укол.

Люмбальная пункция (поясничный прокол) делается для отбора спинно-мозговой жидкости или введения цитостатических препаратов. Выполняется процедура сидя или лежа, спина должна быть полностью согнута. После обезболивания вводится игла для пункции и отбирается спинно-мозговая жидкость.

Процедура облучения незаметна, человек не чувствует действия облучающих лучей.

Переливание крови – обычно методом капельницы. Обычно переливают то, что недостает. При недостатке эритроцитов перельют концентрат эритроцитов, при недостатке белых клеток перельют концентрат гранулоцитов.

Лекарства для снижения лейкоцитных бластов.

Преднизолон – гормональное средство, принимается обычно в таблетках. Побочное действие – увеличение веса.

Винкристин (онковин). Задерживает клеточное деление. Побочное действие – запоры.

Аспаргиназа (краснитин), вводится капельно, предотвращает рост и размножение бластов.

Тяжело переносится многими.

Даунорубицин и адриамицин вводятся внутривенно.

Циклофосфамид (эндоксан) вводится капельно. Для защиты мочевого пузыря от его воздействия вводится уромитексан.

Антиметаболиты – вещества, похожие на необходимые для роста клетки (пища), но с привнесенными изменениями, от которых погибают бласты. Это цитозар, алексан, пуринотел, метотрексат.

Пересадка костного мозга – процедура, сложная для донора – необходимо много пункций для отбора костного мозга. Рецепиенту сначала цитостатиками и облучением полностью опустошают костный мозг, а затем свежие клетки костного мозга вводятся посредством обычной капельницы.

Эритроциты, лейкоциты, тромбоциты: функции и норма в крови

Общий анализ крови необходимо сдавать каждый год. Это обследование достаточно безопасное и информативное, поскольку на составе крови отражаются все процессы, происходящие в организме. Но как правильно трактовать полученные результаты?

Строение и функция эритроцитов

Эритроциты – это красные кровяные клетки

Эритроциты – основные форменные элементы крови. Именно им она обязана своим красным цветом. Их основное назначение – транспорт кислорода и углекислого газа, но они выполняют и другие важные функции. В отличие от большинства других клеток, эритроциты человека не имеют ядра.

Эритроциты образуются в костном мозге, и в своем развитии проходят несколько стадий, в течение которых изменяется строение эритроцита и его способность выполнять транспортную функцию.

На ранних стадиях кроветворения будущие клетки крови еще не дифференцированы:

  • Эритробласты (IV класс кроветворных клеток) находятся в костном мозге. У них есть ядро и полноценная цитоплазма, но происходит активное накопление гемоглобина – основного белка красных кровяных клеток. Эти клетки находятся в костном мозге, в крови их присутствие не обнаруживается. Их количество важно при диагностике злокачественных болезней кроветворной системы.
  • Ретикулоциты, или молодые эритроциты (V класс кроветворных клеток). В отличие от эритробластов, они уже не имеют ядра, но некоторые внутриклеточные структуры частично сохраняются. Большая часть внутреннего пространства клетки занята гемоглобином. Это переходная стадия между эритробластами и зрелыми эритроцитами, их продолжительность жизни невелика, поэтому и в костном мозге, и в крови их довольно мало. Их количество является показателем способности эритроцитарного ростка к восстановлению.
  • Зрелые эритроциты (VI класс). Окончательная стадия развития красных кровяных клеток. У них полностью отсутствует цитоплазма, все внутреннее пространство занято гемоглобином.

Основная функция эритроцитов – транспортировка кислорода

Продолжительность жизни зрелого эритроцита – 2-3 месяца, после чего он разрушается. Функции красных кровяных телец:

  1. Газотранспортная – гемоглобин связывает кислород и углекислый газ, образуя нестойкие соединения.
  2. Транспортировка биологически активных веществ, способных образовывать связи с белками эритроцитов.
  3. Определение групповой принадлежности – эритроциты несут на себе специфические белки, определяющие группу крови и резус-фактор.
  4. Участие в иммунных реакциях и образовании тромбов – у эритроцитов в этих процессах далеко не ключевая роль.
  5. Регуляция pH крови за счет связывания углекислого газа.

Норма в крови по возрасту

Нормальное содержание эритроцитов и гемоглобина зависит от пола и возраста. В среднем у мужчин содержание эритроцитов выше. Это связано с воздействием половых гормонов.

У женщин во время менструации может наблюдаться пониженное содержание эритроцитов вплоть до легкой анемии. В таблице приведены средние нормы содержания эритроцитов, 10*12/л

Высокое содержание красных клеток крови у новорожденных – следствие недостатка кислорода во внутриутробных условиях. После рождения необходимость в таком большом количестве эритроцитов отпадает, и «лишние» клетки подвергаются гемолизу. Этим вызвана физиологическая желтуха у новорожденных, которая наблюдается в первую неделю жизни.

Содержание ретикулоцитов в крови новорожденного может достигать 50% от общего числа эритроцитов, за первый год жизни их количество снижается до 6-8%, к 5 годам приходит к взрослой норме – 0,5-1,2%.

За что отвечают лейкоциты?

Лейкоциты – это клетки иммунной системы. Их основная функция – бороться с проникающими в организм возбудителями заболеваний и чужеродными белками. По своему составу они очень разнообразны, что позволяет белым кровяным клеткам выполнять свои функции наиболее успешно.

Лейкоциты – это белые кровяные клетки

Их жизненный цикл сложнее, чем у эритроцитов, и в отличие от красных кровяных клеток, белые берут начало из двух разных ростков кроветворения:

  • Миелобласты и лимфобласты (IV класс кроветворных клеток) – родоначальники двух различных ростков лейкоцитов. Отличить их друг от друга могут специальные анализы костного мозга, где в основном находятся клетки-предшественники. Их появление в крови – признак злокачественных поражений кроветворной системы.
  • V класс лейкоцитов включает в себя несколько стадий. Потомки миелобластов становятся миелоцитами и накапливают в цитоплазме гранулы, содержащие ферменты. Состав содержимого гранул различен, он определяет функцию будущего лейкоцита. Среди тех клеток, которые выявляет общий анализ крови, к этой группе относятся юные и палочкоядерные нейтрофилы. Незрелые лимфоциты также находятся в крови, но при проведении общего анализа крови их нельзя отличить от зрелых клеток.
  • Зрелые лейкоциты (VI класс) – это полноценные клетки крови, проходящие две стадии существования – кровяную и тканевую. Этот класс включает в себя миелоидный и лимфоидный росток.
  • Нейтрофилы (сегментоядерные) – уничтожают чужеродные белки путем фагоцитоза (поедания), присутствуют в крови, в ткани выходят для фагоцитоза, после чего погибают.
  • Базофилы – вырабатывают различные вещества, принимающие участие в иммунных реакциях. В крови присутствуют недолго, быстро переходят к тканевой стадии – тучные клетки.
  • Эозинофилы – отвечают за противопаразитарный иммунитет, а также участвуют в аллергических реакциях. Тканевая стадия жизни непродолжительна.
  • Моноциты – обладают способностью к фагоцитозу, но в отличие от нейтрофилов способны захватывать крупные объекты (вирус или бактериальную клетку), кровяная стадия непродолжительна, быстро переходят в ткани, становясь тканевыми макрофагами, поддерживают местный иммунитет.
  • Лимфоциты – клетки, основной специализацией которых является выработка антител. Их различают два вида: Т- и В-лимфоциты, но общий анализ крови этих различий не выявляет.

Соотношение различных видов лейкоцитов называется лейкоцитарной формулой. Она может указывать на благоприятные или неблагоприятные изменения в иммунной системе человека.

Подробнее об общем анализе крови можно узнать из видео:

Норма в крови по возрасту

В таблице приведены нормальные значения различных видов лейкоцитов для разных возрастных групп, содержание указано в 10*9/л. Нормальное содержание лейкоцитов у женщин колеблется в более широких пределах. Это связано с особенностями менструального цикла.

Эритроциты, или красные кровяные тельца, — это мелкие (7-8 мкм в диаметре) безъядерные клетки, имеющие форму двояковогнутого диска. Отсутствие ядра позволяет эритроциту вмещать большое количество гемоглобина, а форма способствует увеличению его поверхности. В 1 мм 3 крови насчитывается 4-5 млн эритроцитов. Количество эритроцитов в крови непостоянно. Оно увеличивается при подъеме в высоту, больших потерях воды и т. д.

Эритроциты в течение всей жизни человека образуются из ядерных клеток в красном костном мозге губчатого вещества кости. В процессе созревания они теряют ядро и поступают в кровь. Длительность жизни эритроцитов человека составляет около 120 дней, затем в печени и селезенке они разрушаются и из гемоглобина образуется пигмент желчи.

Функция эритроцитов заключается в переносе кислорода и частично углекислого газа. Эту функцию эритроциты выполняют благодаря наличию в них гемоглобина.

Гемоглобин — красный железосодержащий пигмент, состоящий из железопорфириновой группы (гема) и белка глобина. В 100 мл крови человека содержится в среднем 14 г гемоглобина. В легочных капиллярах гемоглобин, соединяясь с кислородом, образует непрочное соединение — окисленный гемоглобин (оксигемоглобин) за счет двухвалентного железа гема. В капиллярах тканей гемоглобин отдает свой кислород и превращается в восстановленный гемоглобин более темного цвета, поэтому венозная кровь, оттекающая от тканей, имеет темно-красный цвет, а артериальная, богатая кислородом — алая.

Из капилляров тканей гемоглобин переносит к легким углекислый газ [показать] .

Углекислый газ, образующийся в тканях, поступает в эритроциты и, взаимодействуя с гемоглобином, превращается в соли угольной кислоты — бикарбонаты. Это превращение происходит в несколько этапов. Оксигемоглобин в эритроцитах артериальной крови находится в виде калиевой соли — KHbO2. В капиллярах тканей оксигемоглобин отдает свой кислород и теряет свойства кислоты; одновременно в эритроцит из тканей через плазму крови диффундирует углекислый газ и с помощью имеющегося там фермента — угольной ангидразы — соединяется с водой, образуя угольную кислоту — h3CO3. Последняя как кислота более сильная, чем восстановленный гемоглобин, реагирует с его калиевой солью, обмениваясь с ней катионами:

Образовавшийся в результате реакции бикарбонат калия диссоциирует и его анион благодаря высокой концентрации в эритроците и проницаемости мембраны эритроцита к нему диффундирует из клетки в плазму. Возникающий при этом недостаток анионов в эритроците компенсируется ионами хлора, которые из плазмы диффундируют внутрь эритроцитов. При этом в плазме образуется диссоциированная натриевая соль бикарбоната, а в эритроците такая же диссоциированная соль хлористого калия:

Отметим, что мембрана эритроцита непроницаема для катионов К и Nа и что диффузия НСО — 3 из эритроцита идет только до выравнивания концентрации его в эритроците и плазме.

В капиллярах легких эти процессы идут в обратном направлении:

Образовавшаяся угольная кислота тем же ферментом расщепляется до Н2О и СО2, но по мере уменьшения в эритроците содержания НСО3 в него диффундируют эти анионы из плазмы, а соответствующее количество анионов Сl выходит из эритроцита в плазму. Следовательно, кислород крови связан с гемоглобином, а углекислый газ пребывает в виде двууглекислых солей.

В 100 мл артериальной крови содержится 20 мл кислорода имл углекислого газа, венозной — 12 мл кислорода имл углекислого газа. Только очень небольшая часть этих газов непосредственно растворена в плазме крови. Основная масса газов крови, как видно из изложенного, находится в химически связанном виде. При уменьшенном количестве эритроцитов в крови или гемоглобина в эритроцитах у человека развивается малокровие: кровь плохо насыщается кислородом, поэтому органы и ткани получают недостаточное количество его (гипоксия).

Лейкоциты, или белые кровяные тельца, — бесцветные клетки крови диаметром 8-30 мкм, непостоянной формы, имеющие ядро; Нормальное количество лейкоцитов в кровитыс. в 1 мм 3 . Лейкоциты образуются в красном костном мозге, печени, селезенке, лимфатических узлах; продолжительность их жизни может колебаться от нескольких часов (нейтрофилы) дои более суток (лимфоциты). Разрушаются они также в селезенке.

По строению лейкоциты разделяют на несколько групп [ссылка доступна зарегистрированным пользователям, имеющим на форуме 15 сообщений], каждая из которых выполняет определенные функции. Процентное соотношение этих групп лейкоцитов в крови называют лейкоцитарной формулой.

Основная функция лейкоцитов — защита организма от бактерий, чужеродных белков, инородных тел [показать] .

По современным взглядам защита организма, т.е. его невосприимчивость к различным факторам, которые несут генетически чужеродную информацию обеспечивается иммунитетом, представленным разнообразными клетками: лейкоцитами, лимфоцитами, макрофагами и т.д., благодаря которым попавшие в организм чужеродные клетки или сложные органические вещества, отличающиеся от клеток и веществ организма уничтожаются и устраняются.

Иммунитет поддерживает генетическое постоянство организма в онтогенезе. При делении клеток вследствие мутаций в организме нередко образуются клетки с измененным геномом, Чтобы эти клетки-мутанты в ходе дальнейшего деления не привели к нарушениям развития органов и тканей, они уничтожаются иммунными системами организма. Кроме того, иммунитет проявляется в невосприимчивости организма к пересаженным органам и тканям от других организмов.

Первое научное объяснение природы иммунитета дал И. И. Мечников, который пришел к выводу, что иммунитет обеспечивается благодаря фагоцитарным свойствам лейкоцитов. Позднее было установлено, что, кроме фагоцитоза (клеточный иммунитет), большое значение для иммунитета имеет способность лейкоцитов, вырабатывать защитные вещества — антитела, представляющие собой растворимые белковые вещества — иммуноглобулины (гуморальный иммунитет), вырабатываемые в ответ на появление в организме чужеродных белков. В плазме крови антитела склеивают чужеродные белки или расщепляют их. Антитела, обезвреживающие микробные яды (токсины), называют антитоксинами.

Все антитела специфичны: они активны только по отношению к определенным микробам или их токсинам. Если в организме человека есть специфические антитела, он становится невосприимчивым к определенным инфекционным заболеваниям.

Различают иммунитет врожденный и приобретенный. Первый обеспечивает невосприимчивость к тому или иному инфекционному заболеванию с момента рождения и наследуется от родителей, причем иммунные тела могут проникать через плаценту из сосудов материнского организма в сосуды эмбриона или новорожденные получают их с материнским молоком.

Приобретенный иммунитет появляется после перенесения какого-либо инфекционного заболевания, когда в ответ на попадание чужеродных белков данного микроорганизма в плазме крови образуются антитела. В этом случае возникает естественный, приобретенный иммунитет.

Иммунитет можно выработать искусственно, если ввести в организм человека ослабленные или убитые возбудители какой-либо болезни (например, прививка оспы). Этот иммунитет возникает не сразу. Для его проявления требуется время для выработки организмом антител против введенного ослабленного микроорганизма. Такой иммунитет обычно держится годами и называется активным.

Первую в мире прививку — против оспы — осуществил английский врач Е. Дженнер.

Иммунитет, приобретаемый путем введения в организм иммунной сыворотки из крови животных или человека, называют пассивным (например, противокоревая сыворотка). Он проявляется сразу же после введения сыворотки, сохраняется 4-6 недель, а затем антитела постепенно разрушаются, иммунитет ослабевает, и для его поддержания необходимо повторное введение иммунной сыворотки.

Способность лейкоцитов к самостоятельному передвижению с помощью псевдоножек, позволяет им, совершая амебоидные движения, проникать через стенки капилляров в межклеточные пространства. Они чувствительны к химическому составу веществ, выделяемых микробами или распавшимися клетками организма, и передвигаются по направлению к этим веществам или распавшимся клеткам. Вступив с ними в контакт, лейкоциты своими ложноножками обволакивают их и втягивают внутрь клетки, где при участии ферментов они расщепляются (внутриклеточное пищеварение). В процессе взаимодействия с инородными телами многие лейкоциты гибнут. При этом вокруг чужеродного тела накапливаются продукты распада и образуется гной.

Это явление было открыто И. И. Мечниковым. Лейкоциты, захватывающие различные микроорганизмы и переваривающие их, И. И. Мечников назвал фагоцитами, а само явление поглощения и переваривания — фагоцитозом. Фагоцитоз — защитная реакция организма.

Мечников Илья Ильич () — русский биолог-эволюционист. Один из основоположников сравнительной эмбриологии, сравнительной патологии, микробиологии.

Предложил оригинальную теорию происхождения многоклеточных животных, которая названа теорией фагоцителлы (паренхимеллы). Открыл явление фагоцитоза. Разрабатывал проблемы иммунитета.

Основал в Одессе совместно с Н. Ф. Гамалеей первую в России бактериологическую станцию (в настоящее время НИИ им. И. И. Мечникова). Удостоен премий: двух им. К.М. Бэра по эмбриологии и Нобелевской за открытие явления фагоцитоза. Последние годы жизни посвятил изучению проблемы долголетия.

Фагоцитарная способность лейкоцитов чрезвычайно важна, поскольку защищает организм от инфекции. Но в определенных случаях это свойство лейкоцитов может быть вредным, например при пересадке органов. Лейкоциты реагируют на пересаженные органы так же, как и на болезнетворные микроорганизмы, — фагоцитируют, разрушают их. Чтобы избежать нежелательной реакции лейкоцитов, фагоцитоз угнетают специальными веществами.

Тромбоциты, или кровяные пластинки, — бесцветные клетки размером 2-4 мкм, количество которых составляеттыс. в 1 мм 3 крови. Образуются они в костном мозге. Тромбоциты очень хрупки, легко разрушаются при повреждении кровеносных сосудов или при соприкосновении крови с воздухом. При этом из них выделяется особое вещество тромбопластин, которое способствует свертыванию крови.

Белки плазмы крови

Из 9-10% сухого остатка плазмы крови на долю белков приходится 6,5-8,5%. Используя метод высаливания нейтральными солями, белки плазмы крови можно разделить на три группы: альбумины, глобулины, фибриноген. Нормальное содержание альбуминов в плазме крови составляетг/л, глобулиновг/л, фибриногенаг/л. Плазма крови, лишенная фибриногена, называется сывороткой.

Синтез белков плазмы крови осуществляется преимущественно в клетках печени и ретикулоэндотелиальной системы. Физиологическая роль белков плазмы крови многогранна.

  1. Белки поддерживают коллоидно-осмотическое (онкотическое) давление и тем самым постоянный объем крови. Содержание белков в плазме значительно выше, чем в тканевой жидкости. Белки, являясь коллоидами, связывают воду и задерживают ее, не позволяя выходить из русла крови. Несмотря на то, что онкотическое давление составляет лишь небольшую часть (около 0,5%) общего осмотического давления, именно оно обусловливает преобладание осмотического давления крови над осмотическим давлением тканевой жидкости. Известно, что в артериальной части капилляров в результате гидростатического давления безбелковая жидкость крови проникает в тканевое пространство. Это происходит до определенного момента — «поворотного», когда падающее гидростатическое давление становится равным коллоидно-осмотическому. После «поворотного» момента в венозной части капилляров происходит обратный поток жидкости из ткани, так как теперь гидростатическое давление меньше, чем коллоидно-осмотическое. При иных условиях в результате гидростатического давления в кровеносной системе вода просачивалась бы в ткани, что вызвало бы отек различных органов и подкожной клетчатки.
  2. Белки плазмы принимают активное участие в свертывании крови. Ряд белков плазмы, в том числе фибриноген, является основными компонентами системы свертывания крови.
  3. Белки плазмы в известной мере определяют вязкость крови, которая, как уже отмечалась, в 4-5 раз выше вязкости воды и играет важную роль в поддержании гемодинамических отношений в кровеносной системе.
  4. Белки плазмы принимают участие в поддержании постоянного pH крови, так как составляют одну из важнейших буферных систем крови.
  5. Важна также транспортная функция белков плазмы крови: соединяясь с рядом веществ (холестерин, билирубин, и др.), а также с лекарственными средствами (пенициллин, салицилаты и др.), они переносят их в ткань.
  6. Белки плазмы крови играют важную роль в процессах иммунитета (особенно это касается иммуноглобулинов).
  7. В результате образования с белками гглазмы недиализируемых соединений поддерживается уровень катионов в крови. Например, 40-50% кальция сыворотки связано с белками, значительная часть железа, магния, меди и других элементов также связана с белками сыворотки.
  8. Наконец, белки плазмы крови могут служить резервом аминокислот.

Современные физико-химические методы исследования позволили открыть и описать около 100 различных белковых компонентов плазмы крови. При этом особое значение приобрело электрофоретическое разделение белков плазмы (сыворотки) крови [показать] .

В сыворотке крови здорового человека при электрофорезе на бумаге можно обнаружить пять фракций: альбумины, α1, α2, β- и γ-глобулины (рис. 125). Методом электрофореза в агаровом геле в сыворотке крови выявляется до 7-8 фракций, а при электрофорезе в крахмальном или полиакриламидном геле — дофракций.

Следует помнить, что терминология белковых фракций, получаемых при различных видах электрофореза, еще окончательно не установилась. При изменении условий электрофореза, а также при электрофорезе в различных средах (например, в крахмальном или полиакриламидном геле) скорость миграции и, следовательно, порядок белковых зон могут изменяться.

Еще большее число белковых фракций (около 30) можно получить, применяя метод иммуноэлектрофореза. Иммуноэлектрофорез представляет собой своеобразную комбинацию электрофоретического и иммунологического методов анализа белков. Иными словами, термин «иммуноэлектрофорез» подразумевает проведение электрофореза и реакции преципитации в одной среде, т. е. непосредственно на гелевом блоке. При данном методе с помощью серологической реакции преципитации достигается значительное повышение аналитической чувствительности электрофоретического метода. На рис. 126 представлена типичная иммуноэлектрофореграмма белков сыворотки крови человека.

Характеристика основных белковых фракций

На долю альбуминов приходится более половины (55-60%) белков плазмы крови человека. Молекулярная масса альбуминов около. Сывороточные альбумины сравнительно быстро обновляются (период полураспада альбуминов человека равен 7 дням).

Благодаря высокой гидрофильности, особенно в связи с относительно небольшим размером молекул и значительной концентрацией в сыворотке, альбумины играют важную роль в поддержании коллоидно-осмотического давления крови. Известно, что концентрация альбуминов в сыворотке ниже 30 г/л вызывает значительные изменения онкотического давления крови, что приводит к возникновению отеков. Альбумины выполняют важную функцию по транспортировке многих биологически активных веществ (в частности, гормонов). Они способны связываться с холестерином, желчными пигментами. Значительная часть кальция в сыворотке также связана с альбуминами.

При электрофорезе в крахмальном геле фракция альбуминов у некоторых людей иногда делится на две (альбумин А и альбумин В), т. е. у таких людей имеется два независимых генетических локуса, контролирующих синтез альбуминов. Добавочная фракция (альбумин В) отличается от обычного сывороточного альбумина тем, что молекулы этого белка содержат два остатка дикарбоновых аминокислот или более, замещающих в полипептидной цепи обычного альбумина остатки тирозина или цистина. Существуют и другие редкие варианты альбумина (альбумин Ридинг, альбумин Джент, альбумин Маки). Наследование полиморфизма альбуминов происходит по аутосомному кодоминантному типу и наблюдается в нескольких поколениях.

Помимо наследственного полиморфизма альбуминов, встречается преходящая бисальбуминемия, которая в некоторых случаях может быть принята за врожденную. Описано появление быстрого компонента альбумина у больных, получавших большие дозы пенициллина. После отмены пенициллина этот быстрый компонент альбумина вскоре исчезал из крови. Существует предположение, что повышение электрофоретической подвижности фракции альбумин — антибиотик связано с увеличением отрицательного заряда комплекса за счет СООН-групп пенициллина.

Сывороточные глобулины при высаливании нейтральными солями можно разделить на две фракции — эуглобулины и псевдоглобулины. Считают, что фракция эуглобулинов в основном состоит из γ-глобулинов, а фракция псевдоглобулинов включает α-, β- и γ-глобулины.

α-, β- и γ-глобулины — это гетерогенные фракции, которые при электрофорезе, особенно в крахмальном или полиакриламидном геле, способны разделяться на ряд подфракций. Известно, что α- и β-глобулиновые фракции содержат липопротеиды и гликопротеиды. Среди компонентов α- и β-глобулинов имеются также белки, связанные с металлами. Большая часть антител, содержащихся в сыворотке, находится во фракции γ-глобулинов. Уменьшение содержания белков этой фракции резко снижает защитные силы организма.

В клинической практике встречаются состояния, характеризующиеся изменением как общего количества белков плазмы крови, так и процентного соотношения отдельных белковых фракций.

  • Гиперпротеинемия — увеличение общего содержания белков плазмы [показать] .

Диарея у детей, рвота при непроходимости верхнего отрезка тонкой кишки, обширные ожоги могут способствовать повышению концентрации белков в плазме крови. Иными словами, потеря воды организмом, а следовательно, и плазмой приводит к повышению концентрации белка в крови.

Чаще развивается относительная гиперпротеинемия, а не абсолютная. Однако при ряде патологических состояний может наблюдаться и абсолютная гиперпротеинемия, обусловленная резким увеличением уровня γ-глобулинов, например гиперпротеинемия в результате инфекционного или токсического раздражения ретикулоэндотелиальной системы. Сюда же можно отнести гиперпротеинемию при миеломной болезни. В сыворотке крови больных миеломной болезнью появляются специфические «миеломные» белки. Появление в плазме крови «патологических» белков, не существующих в нормальных условиях, принято называть парапротеинемией. Нередко при этом заболевании содержание белков в плазме достигаетг/л.

Во многих случаях миеломной болезни «патологические» белки плазмы преодолевают почечный барьер и появляются в моче. Эти белки в моче получили название «белковые тела Бенс-Джонса». Явления парапротеинемии можно наблюдать и при макроглобулинемии Вальденстрема. Суть этого синдрома заключается в том, что в плазме крови появляется белок в довольно большой концентрации, с большой молекулярной массой 000). При болезни Вальденстрема содержание макроглобулинов в плазме крови может достигать 80% от общего количества белка. Общая же концентрация белка при макроглобулинемии часто составляетг/л.

Выраженная гипопротеинемия — постоянный и патогенетически важный симптом нефротического синдрома. Содержание общего белка снижается дог/л. Гипопротеинемия наблюдается также при поражении печеночных клеток (острая атрофия печени, токсический гепатит и др.). Кроме того, гипопротеинемия может возникнуть при резко увеличенной проницаемости стенок капилляров, при белковой недостаточности (поражение желудочно-кишечного тракта, карцинома и др.). Следовательно, можно считать, что гиперпротеинемия, как правило, связана с гиперглобулинемией, а гипопротеинемия — с гипоальбуминемией.

На рис. 127 схематично представлен характер изменения белковых фракций сыворотки крови при ряде заболеваний. При составлении данной схемы не учитывались форма и стадии заболевания. Для многих болезней, связанных с общим воспалением (инфекционные заболевания, ревматизм и т. д.), отмечается несколько стадий, что, несомненно, сказывается и на белковом спектре крови.

Как отмечалось, α- и β-глобулиновые фракции белков сыворотки крови содержат липопротеиды и гликопротеиды. В состав углеводной части гликопротеидов крови входят в основном следующие моносахариды и их производные: галактоза, манноза, фукоза, рамноза, глюкозамин, галактозамин, нейраминовая кислота и ее производные (сиаловые кислоты). Соотношение этих углеводных компонентов в отдельных гликопротеидах сыворотки крови различно.

Чаще всего в осуществлении связи между белковой и углеводной частями молекулы гликопротеидов принимают участие аспарагиновая кислота (ее карбоксил) и глюкозамин. Несколько реже встречается связь между гидроксилом треонина или серина и гексозаминами или гексозами.

Нейраминовая кислота и ее производные (сиаловые кислоты)- наиболее лабильные и активные компоненты гликопротеидов. Они занимают конечное положение в углеводной цепочке молекулы гликопротечдов и во многом определяют свойства данного гликопротеида.

Гликопротеиды имеются почти во всех белковых фракциях сыворотки крови. При электрофорезе на бумаге гликопротеиды в большем количестве выявляются в α1— и α2-фракциях глобулинов. Гликопротеиды, связанные с α-глобулиновыми фракциями, содержат мало фукозы; в то же время гликопротеиды, выявляемые в составе β- и особенно γ-глобулиновых фракций, содержат фукозу в значительном количестве.

Повышенное содержание гликопротеидов в плазме или сыворотке крови наблюдается при туберкулезе, плевритах, пневмониях, остром ревматизме, гломерулонефритах, нефротическом синдроме, диабете, инфаркте миокарда, подагре, а также при остром и хроническом лейкозах, миеломе, лимфосаркоме и некоторых других заболеваниях. У больных ревматизмом увеличение содержания гликопротеидов в сыворотке соответствует тяжести заболевания. Это объясняется, по мнению ряда исследователей, деполимеризацией при ревматизме основного вещества соединительной ткани, что приводит к поступлению гликопротеидов в кровь.

Плазменные липопротеиды — это сложные комплексные соединения, имеющие характерное строение: внутри липопротеидной частицы находится жировая капля (ядро), содержащая неполярные липиды (триглицериды, эстерифицированный холестерин). Жировая капля окружена оболочкой, в состав которой входят фосфолипиды, белок и свободный холестерин. Основная функция плазменных липопротеидов — транспорт липидов в организме.

В плазме крови человека обнаружено несколько классов липопротеидов.

  • α-липопротеиды, или липопротеиды высокой плотности (ЛПВП). При электрофорезе на бумаге они мигрируют совместно с α-глобулинами. ЛПВП богаты белком и фосфолипидами, постоянно находятся в плазме крови здоровых людей в концентрации 1,25-4,25 г/л у мужчин и 2,5- 6,5 г/л у женщин.
  • β-липопротеиды, или липопротеиды низкой плотности (ЛПНП). Соответствуют по электрофоретической подвижности β-глобулинам. Они являются самым богатым холестерином классом липопротеидов. Уровень ЛПНП в плазме крови здоровых составляет 3,0-4,5 г/л.
  • пре-β-липопротеиды, или липопротеиды очень низкой плотности (ЛПОНП). Расположены на липо-протеинограмме между α- и β-липопротеидами (электрофорез на бумаге), служат главной транспортной формой эндогенных триглицеридов.
  • Хиломикроны (ХМ). Они не перемещаются при электрофорезе ни к катоду, ни к аноду и остаются на старте (место нанесения исследуемого образца плазмы или сыворотки). Образуются в стенке кишечника в процессе всасывания экзогенных триглицеридов и холестерина. Сначала ХМ поступают в грудной лимфатический проток, а из него — в ток крови. ХМ являются главной транспортной формой экзогенных триглицеридов. Плазма крови здоровых людей, не принимавших пищи в течениеч, не содержит ХМ.

Считают, что основным местом образования плазменных пре-β-липопротеидов и α-липопротеидов является печень, a уже из пре-β-липопротеидов в плазме крови при действии на них липопротеидлипазы образуются β-липопротеиды.

Следует заметить, что электрофорез липопротеидов можно проводить как на бумаге, так и в агаровом, крахмальном и полиакриламидном геле, ацетате целлюлозы. При выборе метода электрофореза основным критерием является четкое получение четырех типов липопротеидов. Наиболее перспективен в настоящее время электрофорез липопротеидов в полиакриламидном геле. В этом случае фракция пре-β-липопротеидов выявляется между ХМ и β-липопротеидами.

При ряде заболеваний липопротеидный спектр сыворотки крови может изменяться.

По существующей классификации гиперлипопротеидемий установлены следующие пять типов отклонения липопротеидного спектра от нормы [показать] .

  • Тип I — гиперхиломикронемия. Основные изменения в липопротеинограмме сводятся к следующему: высокое содержание ХМ, нормальное или слегка повышенное содержание пре-β-липопротеидов. Резкое повышение уровня триглицеридов в сыворотке крови. Клинически это состояние проявляется ксантоматозом.
  • Тип II — гипеp-β-липопротеидемия. Этот тип делят на два подтипа:
    • IIа, характеризующийся высоким содержанием в крови p-липопротеидов (ЛПНП),
    • IIб, отличающийся высоким содержанием одновременно двух классов липопротеидов — β-липопротеидов (ЛПНП) и пре-β-липопротеидов (ЛПОНП).

    При II типе отмечается высокое, а в некоторых случаях очень высокое содержание холестерина в плазме крови. Содержание триглицеридов в крови может быть либо нормальным (IIа тип), либо повышенным (IIб тип). Тип II клинически проявляется атеросклеротическими нарушениями, нередко развивается ишемическая болезнь сердца.

  • Тип III — «флотирующая» гиперлипопротеидемия или дис-β-липопротеидемия. В сыворотке крови появляются липопротеиды с необычно высоким содержанием холестерина и высокой электрофоретической подвижностью («патологические», или «флотирующие», β-липопротеиды). Они накапливаются в крови вследствие нарушения превращения пре-β-липопротеидов в β-липопротеиды. Этот тип гиперлипопротеидемии часто сочетается с различными проявлениями атеросклероза, в том числе с ишемической болезнью сердца и поражением сосудов ног.
  • Тип IV — гиперпре-β-липопротеидемия. Повышение уровня пре-β-липопротеидов, нормальное содержание β-липопротеидов, отсутствие ХМ. Увеличение уровня триглицеридов при нормальном или слегка повышенном уровне холестерина. Клинически этот тип сочетается с диабетом, ожирением, ишемической болезнью сердца.
  • Тип V — гиперпре-β-липопротеидемия и хиломикронемия. Наблюдается повышение уровня пре-β-липопротеидов, наличие ХМ. Клинически проявляется ксантоматозом, иногда сочетается со скрытым диабетом. Ишемической болезни сердца при этом типе гиперлипопротеидемии не наблюдается.

Отдельные наиболее изученные и интересные в клиническом отношении белки плазмы

Гаптоглобин входит в состав α2-глобулиновой фракции. Этот белок обладает способностью соединяться с гемоглобином. Образовавшийся гаптоглобин-гемоглобиновый комплекс может поглошаться ретикулоэндотелиальной системой, тем самым предупреждается потеря железа, входящего в состав гемоглобина как при физиологическом, так и при патологическом его освобождении из эритроцитов.

Методом электрофореза выявлено три группы гаптоглобинов, которые были обозначены как Нр 1-1, Нр 2-1 и Нр 2-2. Установлено, что имеется связь между наследованием типов гаптоглобинов и резус-антителами.

Известно, что при электрофорезе белков плазмы крови в зоне α1 и α2-глобулинов двигаются белки, способные ингибировать трипсин и другие протеолитические ферменты. В норме содержание этих белков 2,0-2,5 г/л, но при воспалительных процессах в организме, при беременности и ряде других состояний содержание белков — ингибиторов протеолитических ферментов увеличивается.

Трансферрин относится к β-глобулинам и обладает способностью соединяться с железом. Его комплекс с железом окрашен в оранжевый цвет. В железотрансферриновом комплексе железо находится в трехвалентной форме. Концентрация трансферрина в сыворотке крови составляет около 2,9 г/л. В норме только 1/3 трансферрина насыщена железом. Следовательно, имеется определенный резерв трансферрина, способного связать железо. Трансферрин у различных людей может принадлежать к разным типам. Выявлено 19 типов трансферрина, различающихся по величине заряда белковой молекулы, ее аминокислотному составу и числу молекул сиаловых кислот, связанных с белком. Обнаружение разных типов трансферринов связывают с наследственностью.

Данный белок имеет голубоватый цвет, обусловленный наличием в его составе 0,32% меди. Церулоплазмин является оксидазой аскорбиновой кислоты, адреналина, диоксифенилаланина и некоторых других соединений. При гепатолентикулярной дегенерации (болезнь Вильсона-Коновалова) содержание церулоплазмина в сыворотке крови значительно снижается, что является важным диагностическим тестом.

При помощи энзимэлектрофореза установлено наличие четырех изоферментов церулоплазмина. В норме в сыворотке крови взрослых людей обнаруживаются два изофермента, которые заметно различаются по своей подвижности при электрофорезе в ацетатном буфере при pH 5,5. В сыворотке новорожденных детей также были обнаружены две фракции, но эти фракции имеют большую электрофоретическую подвижность, чем изоферменты церулоплазмина взрослого человека. Следует заметить, что по своей электрофоретической подвижности изоферментный спектр церулоплазмина в сыворотке крови при болезни Вильсона-Коновалова сходен с изоферментным спектром новорожденных детей.

Этот белок получил свое название в результате способности вступать в реакцию преципитации с С-полисахаридом пневмококков. С-реактивный белок в сыворотке крови здорового организма отсутствует, но обнаруживается при многих патологических состояниях, сопровождающихся воспалением и некрозом тканей.

Появляется С-реактивный белок в острый период заболевания, поэтому его иногда называют белком «острой фазы». С переходом в хроническую фазу заболевания С-реактивный белок исчезает из крови и снова появляется при обострении процесса. При электрофорезе белок перемещается совместно с α2-глобулинами.

  • Криоглобулин [показать] .

    Криоглобулин в сыворотке крови здоровых людей также отсутствует и появляется в ней при патологических состояниях. Отличительное свойство этого белка — способность выпадать в осадок или желатинироваться при снижении температуры ниже 37°С. При электрофорезе криоглобулин чаще всего передвигается совместно с γ-глобулинами. Криоглобулин можно обнаружить в сыворотке крови при миеломе, нефрозе, циррозе печени, ревматизме, лимфосаркоме, лейкозах и других заболеваниях.

    Интерферон — специфический белок, синтезируемый в клетках организма в результате воздействия вирусов. В свою очередь этот белок обладает способностью угнетать размножение вируса в клетках, но не разрушает уже имеющиеся вирусные частицы. Образовавшийся в клетках интерферон легко выходит в кровяное русло и оттуда вновь проникает в ткани и клетки. Интерферон обладает видовой специфичностью, хотя и не абсолютной. Например, интерферон обезьяны угнетает размножение вируса в культуре клеток человека. Защитное действие интерферона з значительной степени зависит от соотношения между скоростями распространения вируса и интерферона в крови и тканях.

    До недавнего времени было известно четыре основных класса иммуноглобулинов, входящих в фракцию у-глобулинов: IgG, IgM, IgA и IgD. В последние годы был открыт пятый класс иммуноглобулинов — IgE. Иммуноглобулины практически имеют единый план строения; они состоят из двух тяжелых полипептидных цепей Н (мол. м.000) и двух легких цепей L (мол. м.

    23 000), соединенных тремя дисульфидными мостиками. При этом иммуноглобулины человека могут содержать два типа цепей L (К или λ). Кроме того, каждый класс иммуноглобулинов имеет свой тип тяжелых цепей Н: IgG — γ-цепь, IgA — α-цепь, IgM — μ-цепь, IgD — σ-цепь и IgE — ε-цепь, которые отличаются по аминокислотному составу. IgA и IgM — олигомеры, т. е. четырехцепочечная структура в них повторяется несколько раз.

    Каждый тип иммуноглобулинов может специфически взаимодействовать с определенным антигеном. Термин «иммуноглобулины» имеет отношение не только к нормальным классам антител, но и к большему числу так называемых патологических белков, например миеломных белков, усиленный синтез которых происходит при множественной миеломе. Как уже отмечалось, в крови при этом заболевании миеломные белки накапливаются в относительно высоких концентрациях, в моче обнаруживается белок Бенс-Джонса. Оказалось, что белок Бенс-Джонса состоит из L-цепей, которые, по-видимому, синтезируются в организме больного в избыточном количестве по сравнению с Н-цепями и поэтому выводятся с мочой. С-концевая половина полипептидной цепи молекул белков Бенс-Джонса (фактически L-цепей) у всех больных миеломной болезнью имеет одну и ту же последовательность, а N-концевая половина (107 аминокислотных остатков) L-цепей имеет различную первичную структуру. Исследование Н-цепей миеломных белков плазмы крови также выявило важную закономерность: N-концевые фрагменты этих цепей у различных больных имеют неодинаковую первичную структуру, тогда как остальная часть цепи остается неизменной. Был сделан вывод: вариабельные участки L- и Н-цепей иммуноглобулинов являются местом специфического связывания антигенов.

    При многих патологических процессах содержание иммуноглобулинов в сыворотке крови существенно изменяется. Так, при хроническом агрессивном гепатите отмечается повышение IgG, при алкогольном циррозе — IgA и при первичном билиарном циррозе-IgM. Показано, что концентрация IgE в сыворотке крови увеличивается при бронхиальной астме, неспецифической экземе, аскаридозе и некоторых других заболеваниях. Важно отметить, что у детей у которых наблюдается дефицит IgA, чаще встречаются инфекционные заболевания. Можно предположить, что это является следствием недостаточности синтеза определенной части антител.

    Система комплемента

    Система комплемента сыворотки крови человека включает 11 белков с молекулярной массой отдо. Каскадный механизм их активации запускается в ходе реакции (взаимодействия) антигена с антителом:

    В итоге действия комплемента наблюдаются разрушение клеток путем их лизиса, а также активация лейкоцитов и поглощение ими чужеродных клеток в результате фагоцитоза.

    По последовательности функционирования белки системы комплемента сыворотки крови человека могут быть разделены на три группы:

    1. «узнающая группа», включающая три белка и связывающая антитело на поверхности клетки-мишени (этот процесс сопровождается выделением двух пептидов);
    2. оба пептида на другом участке поверхности клетки-мишени взаимодействуют с тремя белками «активирующей группы» системы комплемента, при этом также происходит образование двух пептидов;
    3. выделенные вновь пептиды способствуют образованию группы белков «мембранной атаки», состоящей из 5 белков системы комплемента, кооперативно взаимодействующих друг с другом на третьем участке поверхности клетки-мишени. Связывание белков группы «мембранной атаки» с поверхностью клетки разрушает ее путем образования сквозных каналов в мембране.

    Ферменты плазмы (сыворотки) крови

    Ферменты, которые обнаруживаются в норме в плазме или сыворотке крови, можно, правда, несколько условно, разделить на три группы:

    • Секреторные — синтезируясь в печени, в норме выделяются в плазму крови, где играют определенную физиологическую роль. Типичными представителями данной группы являются ферменты, участвующие в процессе свертывания крови (см. с. 639). К этой же группе относится сывороточная холинэстераза.
    • Индикаторные (клеточные) ферменты выполняют в тканях определенные внутриклеточные функции. Одни из них сосредоточены главным образом в цитоплазме клетки (лактатдегидрогеназа, альдолаза), другие — в митохондриях (глутаматдегидрогеназа), третьи — в лизосомах (β-глюкуронидаза, кислая фосфатаза) и т. д. Большая часть индикаторных ферментов в сыворотке крови определяется лишь в следовых количествах. При поражении тех или иных тканей активность многих индикаторных ферментов резко возрастает в сыворотке крови.
    • Экскреторные ферменты синтезируются главным образом в печени (лейцинаминопептидаза, щелочная фосфатаза и др.). Эти ферменты в физиологических условиях в основном выделяются с желчью. Еще не полностью выяснены механизмы, регулирующие поступление данных ферментов в желчные капилляры. При многих патологических процессах выделение указанных ферментов с желчью нарушается и активность экскреторных ферментов в плазме крови повышается.

    Особый интерес для клиники представляет исследование активности индикаторных ферментов в сыворотке крови, так как по появлению в плазме или сыворотке крови ряда тканевых ферментов в необычных количествах можно судить о функциональном состоянии и заболевании различных органов (например, печени, сердечной и скелетной мускулатуры).

    Так, с точки зрения диагностической ценности исследования активности ферментов в сыворотке крови при остром инфаркте миокарда можно сравнить с введенным несколько десятков лет назад электрокардиографическим методом диагностики. Определение активности ферментов при инфаркте миокарда целесообразно в тех случаях, когда течение заболевания и данные электрокардиографии нетипичны. При остром инфаркте миокарда особенно важно исследовать активность креатинкиназы, аспартатаминотрансферазы, лактатдегидрогеназы и гидроксибутиратдегидрогеназы.

    При заболеваниях печени, в частности при вирусном гепатите (болезнь Боткина), в сыворотке крови значительно изменяется активность аланин- и аспартатаминотрансфераз, сорбитдегидрогеназы, глутаматдегидрогеназы и некоторых других ферментов, а также появляется активность гистидазы, уроканиназы. Большинство ферментов, содержащихся в печени, присутствует и в других органах и тканях. Однако существуют ферменты, которые более или менее специфичны для печеночной ткани. Органоспецифическими ферментами для печени считаются: гистидаза, уроканиназа, кетозо-1-фосфатальдолаза, сорбитдегидрогеназа; орнитинкарбамоилтрансфераза и несколько в меньшей степени глутаматдегидрогеназа. Изменения, активности этих ферментов в сыворотке крови свидетельствуют о поражении именно печеночной ткани.

    В последнее десятилетие особо важным лабораторным тестом стало исследование активности изоферментов в сыворотке крови, в частности изоферментов лактатдегидрогеназы.

    Известно, что в сердечной мышце наибольшей активностью обладают изоферменты ЛДГ1 и ЛДГ2, а в ткани печени — ЛДГ4 и ЛДГ5. Установлено, что у больных острым инфарктом миокарда в сыворотке крови резко повышается активность изоферментов ЛДГ1 и отчасти ЛДГ2. Изоферментный спектр лактатдегидрогеназы в сыворотке крови при инфаркте миокарда напоминает изоферментный спектр сердечной мышцы. Напротив, при паренхиматозном гепатите в сыворотке крови значительно возрастает активность изоферментов ЛДГ5 и ЛДГ4 и уменьшается активность ЛДГ1 и ЛДГ2.

    Диагностическое значение имеет также исследование активности изоферментов креатинкиназы в сыворотке крови. Существует по крайней мере три изофермента креатинкиназы: ВВ, ММ и MB. В мозговой ткани в основном присутствует изофермент ВВ, в скелетной мускулатуре — ММ-форма. Сердце содержит преимущественно ММ-форму, а также МВ-форму.

    Изоферменты креатинкиназы особено важно исследовать при остром инфаркте миокарда, так как MB-форма в значительном количестве содержится практически только в сердечной мышце. Поэтому повышение активности MB-формы в сыворотке крови свидетельствует о поражении именно сердечной мышцы. По-видимому, возрастание активности ферментов в сыворотке крови при многих патологических процессах объясняется по крайней мере двумя причинами: 1) выходом в кровяное русло ферментов из поврежденных участков органов или тканей на фоне продолжающегося их биосинтеза в поврежденных тканях и 2) одновременным резким повышением каталитической активности тканевых ферментов, переходящих в кровь.

    Возможно, что резкое повышение активности ферментов при поломке механизмов внутриклеточной регуляции обмена веществ связан с прекращением действия соответствующих ингибиторов ферментов, изменением под влиянием различных факторов вторичной, третичной и четвертичной структур макромолекул ферментов, определяющей их каталитическую активность.

    Небелковые азотистые компоненты крови

    Содержание небелкового азота в цельной крови и плазме почти одинаково и составляет в кровиммоль/л. Небелковый азот крови включает азот мочевины (50% от общего количества небелкового азота), аминокислот (25%), эрготионеина — соединение, входящее в состав эритроцитов (8%), мочевой кислоты (4%), креатина (5%), креатинина (2,5%), аммиака и индикана (0,5%) и других небелковых веществ, содержащих азот (полипептиды, нуклеотиды, нуклеозиды, глутатион, билирубин, холин, гистамин и др.). Таким образом, в состав небелкового азота крови входит главным образом азот конечных продуктов обмена простых и сложных белков.

    Небелковый азот крови называют также остаточным азотом, т. е. остающимся в фильтрате после осаждения белков. У здорового человека колебания в содержании небелкового, или остаточного, азота крови незначительны и в основном зависят от количества поступающих с пищей белков. При ряде патологических состояний уровень небелкового азота в крови повышается. Это состояние носит название азотемии. Азотемия в зависимости от причин, вызвавших ее, подразделяется на ретенционную и продукционную. Ретенционная азотемия наступает в результате недостаточного выделения с мочой азотсодержащих продуктов при нормальном поступлении их в кровяное русло. Она в свою очередь может быть почечной и внепочечной.

    При почечной ретенционной азотемии концентрация остаточного азота в крови увеличивается вследствие ослабления очистительной (экскреторной) функции почек. Резкое повышение содержания остаточного азота при ретенционной почечной азотемии происходит в основном за счет мочевины. В этих случаях на азот мочевины приходится 90% небелкового азота крови вместо 50% в норме. Внепочечная ретенционная азотемия может возникнуть в результате тяжелой недостаточности кровообращения, снижения артериального давления и уменьшения почечного кровотока. Нередко внепочечная ретенционная азотемия является результатом наличия препятствия оттоку мочи после ее образования в почке.

  • Клетки крови. Строение клеток крови, эритроциты, лейкоциты, тромбоциты, резус фактор – что это?

    Кровь человека является важнейшей системой в организме, которая выполняет очень много функций. Кровь – это и транспортная система, по которой переносятся необходимые вещества к клеткам различных органов, а из клеток удаляются продукты распада и прочие отработанные вещества, подлежащие выведению из организма. В крови же циркулируют клетки и вещества, обеспечивающие защитную функцию всего организма. Рассмотрим подробнее, что же представляет собой система крови, из чего состоит и какие функции выполняет. Итак, кровь состоит из жидкой части и клеток. Жидкая часть представляет собой особый раствор белков, сахаров, жиров, микроэлементов и называется сывороткой крови. Оставшаяся часть крови представлена различными клетками.

    В составе крови различают три основных видов клеток: эритроциты, лейкоциты и тромбоциты.

    Начнем с клеток, которых больше всего находится в крови – эритроцитов. Многие из нас знают, что эритроциты переносят кислород к клеткам органов и тканей, тем самым обеспечивая дыхание каждой мельчайшей клетки. За счет чего они способны это делать? Итак, эритроцит – это клетка, имеющая особую форму двояковогнутого диска. В клетке нет ядра, а большую часть цитоплазмы эритроцита занимает специальный белок – гемоглобин. Гемоглобин имеет очень сложную структуру, состоит из белковой части и атома железа (Fe). Именно гемоглобин и является переносчиком кислорода.

    Происходит данный процесс следующим образом: имеющийся атом железа присоединяет молекулу кислорода, когда кровь находится в легких человека во время вдоха, затем кровь по сосудам проходит через все органы и ткани, где кислород открепляется от гемоглобина и остается в клетках. В свою очередь, из клеток выделяется углекислый газ, который присоединяется к атому железа гемоглобина, кровь вновь возвращается в легкие, где происходит газообмен – углекислый газ вместе с выдохом удаляется, вместо него присоединяется кислород и весь круг повторяется вновь. Таким образом, гемоглобин переносит к клеткам кислород, а из клеток забирает углекислый газ. Именно поэтому человек вдыхает кислород, а выдыхает углекислый газ. Кровь, в которой эритроциты насыщены кислородом, имеет ярко алую окраску и называется артериальной, а кровь, с эритроцитами, насыщенными углекислым газом, имеет темно – красный цвет и называется венозной.

    В крови человека эритроцит живет 90 – 120 дней, после чего разрушается. Явление разрушения эритроцитов называется гемолиз. Гемолиз происходит в основном в селезенке. Часть эритроцитов подвергается разрушению в печени или непосредственно в сосудах.

    Подробную информацию о расшифровке общего анализа крови читайте в статье: Общий анализ крови

    На поверхности эритроцитов имеются специальные молекулы – антигены. Антигенов существует несколько разновидностей, поэтому кровь разных людей отличается друг от друга. Именно антигены формируют группу крови и резус - фактор. Например, наличие антигенов 00 – формирует первую группу крови, антигены 0А – вторую, 0В – третью и антигены АВ – четвёртую. Резус – фактор определяется наличием или отсутствием антигена Rh на поверхности эритроцита. Если антиген Rh имеется на эритроците, то кровь положительного резус – фактора, если же отсутствует, то кровь, соответственно,с отрицательным резус - фактором. Определение группы крови и резус – фактора имеет огромное значение при переливании крови. Разные антигены «враждуют» друг с другом, что вызывает разрушение эритроцитов и человек может погибнуть. Поэтому переливать можно только кровь одинаковой группы и одного резус – фактора. Эритроцит развивается из особой клетки – предшественницы. Данная клетка - предшественница располагается в костном мозгу и называется эритробласт. Эритробласт в костном мозгу проходит несколько стадий развития, чтобы превратиться в эритроцит и за это время несколько раз делится. Таким образом, из одного эритробласта получается 32 - 64 эритроцита. Весь процесс созревания эритроцитов из эритробласта проходит в костном мозгу, а готовые эритроциты поступают в кровяное русло взамен «старых», подлежащих разрушению. Ретикулоцит, предшественник эритроцита Помимо эритроцитов в крови имеются ретикулоциты. Ретикулоцит – это немного «недозрелый» эритроцит. В норме у здорового человека их количество не превышает 5 - 6 штук на 1000 эритроцитов. Однако в случае острой и большой кровопотери, из костного мозга выходят и эритроциты, и ретикулоциты. Это происходит, потому что резерв готовых эритроцитов недостаточен для восполнения кровопотери, а для созревания новых требуется время. В силу данного обстоятельства костный мозг «выпускает» немного «незрелые» ретикулоциты, которые, однако, уже могут выполнять основную функцию – переносить кислород и углекислый газ. В норме 70-80% эритроцитов имеют сферическую двояковогнутую форму, а остальные 20-30% могут быть различной формы. Например, простая сферическая, овальная, надкусанная, чашеобразная и т.д. Форма эритроцитов может нарушаться при различных заболеваниях, например эритроциты в форме серпа характерны для серповидно – клеточной анемии, овальной формы бывают при недостатке железа, витаминов В12, фолиевой кислоты.

    Подробную информацию о причинах сниженного гемоглобина (аненмии) читайте в статье: Анемия

    Лейкоциты – большой класс клеток крови, который включает в себя несколько разновидностей. Рассмотрим разновидности лейкоцитов подробно.  

    Итак, прежде всего, лейкоциты делятся на гранулоциты (имеют зернистость, гранулы) и агранулоциты (не имеют гранул).

    К гранулоцитам относятся:
    1. нейтрофилы
    2. эозинофилы
    3. базофилы
    Агранулоциты включают следующие виды клеток:
    Информацию о норме лейкоцитов в крови читайте в статье: Общий анализ крови
    Нейтрофилы – самая многочисленная разновидность лейкоцитов, в норме в крови их содержится до 70% от общего количества лейкоцитов. Именно поэтому подробное рассмотрение видов лейкоцитов начнем именно с них.

    Откуда такое название – нейтрофил?

    В первую очередь узнаем, почему нейтрофил так называется. В цитоплазме этой клетки имеются гранулы, которые окрашиваются красителями, имеющими нейтральную реакцию (рН = 7,0). Именно поэтому данную клетку так и назвали: нейтрофил – имеет сродство к нейтральным красителям. Данные нейтрофильные гранулы имеют вид мелкой зернистости фиолетово – коричневого цвета.

    Как выглядит нейтрофил? Как он появляется в крови?

    Нейтрофил имеет округлую форму и необычную форму ядра. Ядро его представляет собой палочку или же 3 – 5 сегментов, соединенных между собой тонкими тяжами. Нейтрофил с ядром в форме палочки (палочкоядерный) – это «молодая» клетка, а с сегментарным ядром (сегментоядерный) – «зрелая» клетка. В крови большинство нейтрофилов сегментоядерные (до 65%), палочкоядерные в норме составляют лишь до 5%.  

    Откуда же нейтрофилы приходят в кровь? Нейтрофил образуется в костном мозгу из своей клетки – предшественницы – миелобласта нейтрофильного. Как и в ситуации с эритроцитом, клетка – предшественница (миелобласт) проходит несколько стадий созревания, в течение которых также делится. В итоге из одного миелобласта созревает 16-32 нейтрофила.

    Где и сколько живет нейтрофил?

    Что же происходит с нейтрофилом дальше после его созревания в костном мозгу? Зрелый нейтрофил проживает в костном мозгу 5 дней, после чего выходит в кровь, где живет в сосудах 8 – 10 часов. Причем костномозговой пул зрелых нейтрофилов в 10 – 20 раз больше, чем сосудистый пул. Из сосудов они уходят в ткани, из которых уже не возвращаются в кровь. В тканях нейтрофилы живут 2 – 3 дня, после чего подвергаются разрушению в печени и селезенке. Итак, зрелый нейтрофил живет только 14 суток.

    Гранулы нейтрофила – что это?

    В цитоплазме нейтрофила имеется около 250 видов гранул. Эти гранулы содержат специальные вещества, которые помогают выполнять нейтрофилу его функции. Что же содержится в гранулах? В первую очередь, это ферменты, бактерицидные вещества (уничтожающие бактерии и прочие болезнетворные агенты), а также регуляторные молекулы, которые контролируют деятельность самих нейтрофилов и других клеток.

    Какие функции выполняет нейтрофил?

    Что же делает нейтрофил? Каково его предназначение? Основная роль нейтрофила – защитная. Эта защитная функция реализуется за счет способности к фагоцитозу. Фагоцитоз – это процесс, в течение которого нейтрофил подходит к болезнетворному агенту (бактерии, вирусу), захватывает его, помещает внутрь себя и при помощи ферментов своих гранул убивает микроб. Один нейтрофил способен поглотить и обезвредить 7 микробов. Помимо этого данная клетка участвует в развитии воспалительной реакции. Таким образом, нейтрофил – одна из клеток, обеспечивающих иммунитет человека. Работает нейтрофил, осуществляя фагоцитоз, в сосудах и тканях. Как выглядит эозинофил? Почему так называется? Эозинофил, как и нейтрофил, имеет округлую форму и палочковидную или сегментарную форму ядра. Гранулы, расположенные в цитоплазме данной клетки, достаточно крупные, одинакового размера и формы, окрашиваются в ярко – оранжевый цвет, напоминая красную икру. Гранулы эозинофила окрашиваются красителями, имеющими кислую реакцию (рН < 7). Основной кислый краситель – эозин, именно поэтому данную клетку так и назвали: эозинофил – имеет сродство к эозину.

    Где формируется эозинофил, сколько он живет?

    Как и нейтрофил, эозинофил образуется в костном мозгу из клетки – предшественницы – эозинофильного миелобласта. В процессе созревания проходит те же стадии, что и нейтрофил, однако имеет другие гранулы. Гранулы эозинофила содержат ферменты, фосфолипиды и белки. После полного созревания эозинофилы живут несколько дней в костном мозгу, затем выходят в кровь, где циркулируют 3 – 8 часов. Из крови эозинофилы уходят в ткани, контактирующие с внешней средой – слизистые оболочки дыхательных путей, мочеполового тракта и кишечника. В общей сложности эозинофил живет 8 – 15 суток.

    Что делает эозинофил?

    Как и нейтрофил, эозинофил осуществляет защитную функцию благодаря способности к фагоцитозу. Нейтрофил подвергает фагоцитозу болезнетворные агенты в тканях, а эозинофил на слизистых дыхательных и мочевыводящих путей, а также кишечника. Таким образом, нейтрофил и эозинофил выполняют сходную функцию, только в разных местах. Поэтому эозинофил также является клеткой, обеспечивающей иммунитет. Отличительной чертой эозинофила является его участие в развитии аллергических реакций. Поэтому у людей, имеющих аллергию на что – либо обычно повышается количество эозинофилов в крови. Как они выглядят? Почему так называются? Данный вид клеток в крови самый малочисленный, их содержится лишь 0 – 1% от общего числа лейкоцитов. Имеют округлую форму, палочкоядерное или сегментоядерное ядро. В цитоплазме содержатся различные по величине и форме гранулы темно – фиолетового цвета, которые имеют внешний вид, напоминающий черную икру. Данные гранулы называются базофильной зернистостью. Зернистость названа базофильной, поскольку окрашивается красителями, имеющими щелочную (basic) реакцию (рН >7).Да и вся клетка названа так, потому что имеет сродство к основным красителям: базофил – basic.

    Откуда берется базофил?

     Базофил также образуется в костном мозгу из клетки – предшественницы – базофильного миелобласта. В процессе созревания проходит те же стадии, что и нейтрофил и эозинофил. Гранулы базофила содержат ферменты, регуляторные молекулы, белки, участвующие в развитии воспалительной реакции. После полного созревания базофилы выходят в кровь, где живут не более двух суток. Далее эти клетки покидают кровяное русло, уходят в ткани организма, однако что происходит с ними там – на сегодняшний день неизвестно.

    Какие функции возложены на базофил?

    Во время циркуляции в крови базофилы участвуют в развитии воспалительной реакции, способны уменьшать свертывание крови, а также принимают участие в развитии анафилактического шока (вид аллергической реакции). Базофилы продуцируют специальную регуляторную молекулу интерлейкин IL– 5, которая увеличивает количество эозинофилов в крови. Таким образом, базофил – клетка, участвующая в развитии воспалительных и аллергических реакций. Что такое моноцит? Где он вырабатывается? Моноцит является агранулоцитом, то есть в данной клетке отсутствует зернистость. Это крупная клетка, немного треугольной формы, имеет большое ядро, которое бывает округлой формы, бобовидной, лопастное, палочковидное и сегментированное.

    Моноцит образуется в костном мозгу из монобласта. В своем развитии проходит несколько стадий и несколько делений. В итоге зрелые моноциты не имеют костномозгового резерва, то есть после образования сразу выходят в кровь, где и живут 2 – 4 суток.

    Макрофаг. Что это за клетка?

    После этого часть моноцитов погибает, а часть уходит в ткани, где немного видоизменяется – «дозревает» и становится макрофагами. Макрофаги – это самые большие клетки в крови, которые имеют ядро овальной или округлой формы. Цитоплазма голубого цвета с большим количеством вакуолей (пустот), которые придают ей пенистый вид. В тканях организма макрофаги живут несколько месяцев. Попав из кровяного русла в ткани, макрофаги могут стать резидентными клетками или блуждающими. Что это значит? Резидентный макрофаг все время своей жизни проведет в одной и той же ткани, на одном и том же месте, а блуждающий постоянно перемещается. Резидентные макрофаги различных тканей организма по-разному называются: например, в печени это купферовские клетки, в костях – остеокласты, в головном мозгу – микроглиальные клетки и т.д.

    Что делают моноциты и макрофаги?

    Какие же функции выполняют эти клетки? Моноцит крови продуцирует различные ферменты и регуляторные молекулы, причем эти регуляторные молекулы могут способствовать как развитию воспаления, так и, наоборот, тормозить воспалительную реакцию. Что делать в данный конкретный момент и в определенной ситуации моноциту? Ответ на этот вопрос не зависит от него, необходимость усилить воспалительную реакцию или ослабить принимается организмом в целом, а моноцит лишь выполняет команду. Помимо этого моноциты участвуют в заживлении ран, помогая ускорить этот процесс. Также способствуют восстановлению нервных волокон и росту костной ткани. Макрофаг же в тканях сосредоточен на выполнении защитной функции: он фагоцитирует болезнетворные агенты, подавляет размножение вирусов. Внешний вид лимфоцита. Этапы созревания. Лимфоцит – округлая клетка различных размеров, имеющая крупное круглое ядро. Лимфоцит образуется из лимфобласта в костном мозгу, так же как и другие клетки крови, несколько раз делится в процессе созревания. Однако в костном мозгу лимфоцит проходит лишь «общую подготовку», после чего окончательно созревает в тимусе, селезенке и лимфоузлах. Такой процесс созревания необходим, поскольку лимфоцит – это иммунокомпетентная клетка, то есть клетка, обеспечивающая всё разнообразие иммунных реакций организма, создавая тем самым его иммунитет. Лимфоцит, прошедший «специальную подготовку» в тимусе, называется Т – лимфоцит, в лимфоузлах или селезенке – В – лимфоцит. Т – лимфоциты меньше В – лимфоцитов по размеру. Соотношение Т и В – клеток в крови 80% и 20% соответственно. Для лимфоцитов кровь является транспортной средой, которая доставляет их к тому месту в организме, где они необходимы. Живет лимфоцит в среднем 90 дней.

    Что обеспечивают лимфоциты?

    Основная функция и Т- , и В-лимфоцитов – защитная, которая осуществляется за счет участия их в иммунных реакциях. Т – лимфоциты преимущественно фагоцитируют болезнетворные агенты, уничтожая вирусы. Иммунные реакции, осуществляемые Т-лимфоцитами, называются неспецифической резистентностью. Неспецифической она является потому, что в отношении всех болезнетворных микробов эти клетки действуют одинаково. В – лимфоциты, напротив, уничтожают бактерии, вырабатывая против них специфические молекулы – антитела. На каждый вид бактерий В – лимфоциты вырабатывают особенные антитела, способные уничтожать только этот вид бактерий. Именно поэтому В – лимфоциты формируют специфическую резистентность. Неспецифическая резистентность направлена в основном против вирусов, а специфическая – против бактерий.

    Подробную информацию о заболеваниях крови читайте в статье: Лейкоз

    Участие лимфоцитов в формировании иммунитета

    После того как В – лимфоциты однажды встречались с каким-либо микробом, они способны формировать клетки памяти. Именно наличие таких клеток памяти обуславливает устойчивость организма к инфекции, вызываемой данной бактерий. Поэтому с целью формирования клеток памяти используют прививки против особенно опасных инфекций. В этом случае в организм человека в виде прививки вводится ослабленный или мертвый микроб, человек переболевает в легкой форме, в результате формируются клетки памяти, которые и обеспечивают устойчивость организма к данному заболеванию на протяжении всей жизни. Однако некоторые клетки памяти сохраняются на всю жизнь, а некоторые живут определенный промежуток времени. В этом случае прививки делают несколько раз. Тромбоциты – маленькие клетки круглой или овальной формы, не имеющие ядра. При активации образуют «выросты», приобретая звездчатую форму. Образуются тромбоциты в костном мозгу из мегакариобласта. Однако образование тромбоцитов имеет особенности, нехарактерные для других клеток. Из мегакариобласта образуется мегакариоцит, который является самой большой клеткой костного мозга. Мегакариоцит имеет огромную цитоплазму. В результате созревания в цитоплазме вырастают разделительные мембраны, то есть происходит разделение единой цитоплазмы на небольшие фрагменты. Данные небольшие фрагменты мегакариоцита «отшнуровываются», и это и есть самостоятельные тромбоциты.Из костного мозга тромбоциты выходят в кровоток, где живут 8 – 11 дней, после чего гибнут в селезенке, печени или легких.

    В зависимости от диаметра тромбоциты делят на микроформы, имеющие диаметр около 1,5 микрон, нормоформы с диаметром 2 - 4 микрона, макроформы - диаметр 5 микрон и мегалоформы - диаметром 6 – 10 микрон.

    Эти маленькие клетки выполняют очень важные функции в организме. Во-первых, тромбоциты поддерживают целостность сосудистой стенки и помогают ее восстановлению при повреждениях. Во-вторых, тромбоциты останавливают кровотечение, образуя тромб. Именно тромбоциты первыми оказываются в очаге разрыва сосудистой стенки и кровотечения. Именно они, слипаясь между собой, образуют тромб, который «заклеивает» поврежденную стенку сосуда, тем самым, останавливая кровотечение.

    Подробнее о нарушениях свертываемости крови читайте в статье: Гемофилия

    Таким образом, клетки крови являются важнейшими элементами в обеспечении основных функций человеческого организма. Тем не менее, некоторые их функции по сей день остаются неизученными. Автор: Наседкина А.К.

    Специальность: Врач офтальмолог

    Эритроциты это красные клетки крови: отклонения от нормы

    Эритроциты представляют собой красные клетки крови. Практически 90% от их материала — гемоглобин. При нормальных условиях он находится лишь в эритроцитах. По функциям их клетки практически на 100% сходны с гемоглобином.

    Вот эти функции:

    • разносить кислород по тканям;
    • возвращать легким углекислоту из тканей;
    • управлять балансом кислоты и щелочи клеток;
    • транспортировать свободные радикалы, полезные элементы и другие элементы, обладающие биоактивными свойствами.

    Строение

    Красным кровяным клеткам присуща форма двояковогнутого диска. Такая форма, обретаемая в период созревания, дает возможность сделать больше поверхность клеток, повышая их пластичность, что позволяет легче проходить мелкие сосуды. Эти характеристики увеличивают транспортные способности эритроцитов. Но при этом во время различных повреждений и ряда генетических болезней эритроциты меняют форму на овальную, форму серпа или форму шара.

    Стенки их — мембраны из липидов, имеющие внутри молекулы белков.

    Для мембран характерны важнейшие функции:

    • селективная проницаемость для различных веществ;
    • наличие на поверхностной части мембран возможности свободного крепления антител, для путешествий по системе крови;
    • нахождение внутри мембраны особых белковых соединений, занятых поддержанием электролитного баланса, с выводом из клетки лишнего натрия и увеличением содержания в клетках калия;
    • способность эритроцитов максимально эффективно обеспечивать газообмен;
    • различия в содержании электролитов внутри кровяных клеток и вне их, способствующие поляризации мембраны клетки, служащие препятствием для взаимной склейки эритроцитов и помогающие клеткам отталкиваться от стенок сосудов.

    Созревают кровяные клетки внутри костного мозга, проходя ряд стадий. В итоге эритроциты теряют ядро, а также почти полностью внутриклеточные частицы. Теряются рибосомы и митохондрии.

    Взамен значительное место внутри эритроцита принадлежит гемоглобину. Главной задачей этого белкового соединения является прием кислорода в тканях легких, удержание его во время переноса по кровеносной системе и отдачу тканям человека.

    Внутри эритроциты наполнены жидкой цитоплазмой. В ней в растворенном состоянии содержатся электролиты (натрий, калий, кальций, хлор, магний), кроме того есть белковые частицы, участвующие в ряде химических процессов. Защитой внутренней области эритроцита служит крепкий каркас, придающий клетке ее геометрию.

    Сколько эритроцитов в крови является нормой?

    По старой шкале эритроциты крови оцениваются по тому, сколько их содержится в кубическом миллиметре. Сейчас принята другая единица — количество миллионов клеток в литре крови.

    Нормальное значение эритроцитов:

    • у мужчин 4,2 — 5,3 *1012/л;
    • у женщин 3,5 — 5,2 *1012/л;
    • у мальчиков-подростков 3,9 — 5,6 *1012/л;
    • у девочек-подростков 3,5 — 5 *1012/л;
    • у мальчиков до 12 лет 3,9 — 5,6 *1012/л;
    • у девочек до 12 лет 3,5 — 5 *1012/л.

    Для людей пожилого возраста нормой считается такое содержание эритроцитов как 4 — 4,2 x 1012/л. Этот показатель ниже среднего.

    При беременности не должно вызывать беспокойства так называемое ложное понижение числа эритроцитов. Такое положение возникает поскольку общий объем крови в период беременности увеличивается быстрыми темпами, однако жидкая фракция крови растет более быстро, чем кровяные клетки. Получается, что капля крови из результата общего анализа будет более жидкой, содержащей меньшее количество красных кровяных телец. В то же время эритроциты по организму имеют в целом нормальный показатель.

    Эритроцитоз

    Состояние превышения количества эритроцитов относительно нормального носит название эритроцитоз. При этом оно либо является вариантом нормы, либо может быть ложным (спровоцированным обезвоживанием). Вероятна и патология органов кроветворения.

    Физиологический эритроцитоз

    Можно повстречать у граждан, ведущих активные спортивные занятия. Этот эффект наблюдается у жителей горной местности. Увеличение числа эритроцитов в крови в данном случае — признак адаптации организма к тому, что ему нужно большее количество кислорода.

    Ложный эритроцитоз

    Происходит по причине обезвоживания организма. К недостатку воды ведут рвота, диарея, инфекционные болезни. Обезвоживание, влекущее за собой снижение концентрации плазмы в крови, и, в этих условиях, в капле крови, взятой при анализе, найдется большее количество различных частиц, среди которых имеются и эритроциты. Если имеет место ложный эритроцитоз, то содержание красных кровяных телец в организме сохраняется в пределах нормы.

    Риск того, что подвергнутся поражению кроветворные органы, служит важнейшей причиной, вызывающей повышенную тревогу при высоких показателях эритроцитов. Только дополнительные исследования помогут исключить патологию.

    Эритроциты ниже нормы

    Когда в крови человека число эритроцитов ниже нормального, такое состояние называется эритропенией. Оно возможно говорит о наличии анемии. Правда если гемоглобин ниже нормы однозначно доказывает анемию, то эритропения не обязательно служит симптомом анемии. Конкретную разновидность анемического состояния можно определить по дополнительным параметрам общего анализа крови или на основании итогов добавочных исследований, которые прописаны врачом.

    Эритроциты ниже нормы способны свидетельствовать о том, что имели место кровотечения в недавнем прошлом или имеются внутренние кровотечения.

    Если кровопотери носят хронический характер, эритроциты крови находятся в норме или ниже нормы в незначительной степени. Тогда имеет смысл найти цветной показатель и исследовать гемоглобин.

    Имеется целая группа лабораторных исследований, которые используются в целях диагностики самых различных видов анемии.

    Такими исследованиями являются:

    • анализ формы эритроцитов;
    • исследования цитохимии;
    • нахождение резистентности клеток.

    Среди подобных исследований находится гематокритное число. Нормальным считается гематокрит для мужчин не меньше 40%, для женщин не меньше 36%. Когда гематокрит ниже нормы, значит имеет место анемия. Если оно увеличено, значит имеет место полицитемия и, иногда, симптоматические эритроциты.

    Среди дополнительных исследований можно назвать непримерное гематологическое исследование и изучение морфологии кровяных клеток в окрашенных мазках крови.

    В качестве варианта нормы эритропению можно повстречать на начальной стадии вынашивания ребенка. Ниже становятся эритроциты у людей пожилого возраста.

    Пойкилоцитоз — изменение формы эритроцитов

    Кроме показателя эритроцитов ниже нормы некоторым видам болезней присущ пойкилоцитоз. Он является отличительным признаком ряда болезней. Наиболее распространены микросфероцитоз, присущий анемии Минковского-Шоффара, а также серповидная форма, характерная для серповидно-клеточной анемии. Иные формы кровяных клеток встречаются при разнообразных болезненных состояниях.

    По диаметру эритроциты бывают:

    • микроцитами (менее 8 мкм);
    • нормоцитами (8 мкм);
    • макроцитами (более 8 мкм);
    • мегалоцитами (12 мкм).

    Если в мазке встречаются клетки различного диаметра, такой эффект называется анизоцитозом. По тому, какого размера эритроциты преобладают, можно говорить о микро-анизоцитозе либо макро-анизоцитозе. Первый встречается при талассемии, второй определяется во время анемии беременных, лейкозе, гипотиреозе. О малокровии или глистах свидетельствует мегалоцитоз.

    Окраска

    Цвет кровяных клеток определяется степенью их насыщенности гемоглобином Когда она выше нормы — это гиперхромия, наоборот — гипохромия. В результате геморрагической анемии может развиться полихроматофилия.

    Помимо перечисленных патологий в кровяных клетках могут оказаться разнообразные вкрапления, возникающие вследствие регенерации патологической природы. Среди таких включений встречаются кольца Кебота — спутники мегалобластных анемий. Возможно также появление базофильной зернистости, сопутствующее отравлению солями свинца и талассемии.

    Эритроциты в моче

    Нормальное содержание кровяных клеток в моче до 2 в поле зрения. Когда мочевой осадок исследуется по методике Нечипоренко в нем обнаруживается до 1000 красных кровяных клеток. Появление небольшого количества эритроцитов в моче возможно в результате физических перегрузок. Нахождение этих частиц в детской моче или в моче у беременных указывает на патологию и нуждается в дополнительных исследованиях.


    Смотрите также