Сущность свертывания крови заключается в


Механизм свертывания крови

Свертывание крови является важной защитной реакцией организма, препятствующей кровопотере и тем самым сохраняющей постоянство объема циркулирующей крови. В механизме свертывания крови участвуют тринадцать факторов, содержащихся в плазме крови.

Сущность процесса свертывания крови заключается в переходе растворимого белка плазмы крови фибриногена в нерастворимый нитевидный белок фибрин, образующий основу кровяного сгустка — тромба.

В механизме свертывания крови выделяют три фазы. При разрыве тканей и стенок сосудов, повреждении эритроцитов и тромбоцитов высвобождается фермент тромбопластин, который совместно с факторами свертывания крови и ионами Сa2+ способствует образованию фермента протромбиназы (фаза I). Протромбиназа превращает неактивный фермент протромбин в активный фермент тромбин (фаза II). В фазе III при участии тромбина и ионов Сa2+ происходит превращение фибриногена в фибрин.

Наследственный дефицит факторов VIII, IX и XI приводит к несвертываемости крови — гемофилии формы А, В и С соответственно.

При повышенной свертываемости крови возникают внутренние тромбы, например в сосудах сердца (инфаркт миокарда), мозговых сосудах (инсульт), легочной артерии и т. д.

В крови имеется и антисвертывающая система. Одним из мощных антикоагулянтов является гепарин, образуемый базофилами крови и тучными клетками соединительной ткани.

Сущность процесса свертывания крови заключается в

Тромбоциты (кровяные пластинки) образуются в красном костном мозге. Содержание в 1 мл крови – 300 тысяч. Срок жизни 7-9 дней.

Свертывание крови при повреждении кровеносных сосудов происходит в 2 этапа.

Оглавление:

Сначала происходит склеивание тромбоцитов и образуется временный (непрочный) тромб. Затем под действием фермента тромбина растворенный в крови белок фибриноген превращается в нерастворимый фибрин, нити фибрина склеиваются, получается постоянный тромб.

Несвертываемость крови может быть вызвана недостатком кальция, витамина К (вырабатывается микрофлорой кишечника), наследственным заболеванием (гемофилией).

При «неправильном» переливании крови перелитые эритроциты несут чужеродные антигены, поэтому они пожираются местными фагоцитами. Массовое разрушение эритроцитов приводит к свертыванию крови прямо в сосудах. (При «правильном» переливании крови чужеродными частицами оказываются перелитые антитела (агглютинины), их уничтожение местными фагоцитами не приводит к отрицательным последствиям.)

Тесты

1. Сущность процесса свёртывания крови заключается в

А) склеивании эритроцитов

Б) переходе растворимого белка фибриногена в нерастворимый белок фибрин

В) увеличении числа форменных элементов в 1 см3 крови

Г) скапливании лейкоцитов вокруг чужеродных тел и микроорганизмов

2. В свёртывании крови участвуют

3. Сущность свертывания крови заключается в

А) склеивании эритроцитов

Б) превращении фибриногена в фибрин

В) превращении лейкоцитов в лимфоциты

Г) склеивании лейкоцитов

4. У больного перед операцией определяют количество тромбоцитов в крови, для того чтобы

А) охарактеризовать состояние иммунной системы

Б) определить содержание кислорода в крови

В) выявить отсутствие (или наличие) воспалительного процесса в организме

Г) определить скорость свёртывания крови

5. Процесс свёртывания крови начинается с

А) повышения кровяного давления

Б) разрушения тромбоцитов

В) накопления в сосуде венозной крови

Г) образования местного очага воспаления

6. Одним из этапов образования тромба в кровеносном сосуде является

А) нагноение раны

Б) синтез гемоглобина

В) образование фибрина

Г) увеличение числа тромбоцитов

7. Что является основой тромба?

8. Как называют безъядерные форменные элементы крови, разрушение которых приводит к свёртыванию крови?

9. Какую роль играют тромбоциты в крови человека?

А) переносят конечные продукты обмена веществ

Б) переносят питательные вещества

В) участвуют в фагоцитозе

Г) участвуют в её свёртывании

10. Тромб, закупоривающий повреждённое место сосуда, образуется из сети нитей

Г) разрушающихся тромбоцитов

11. Для каких клеток крови характерны следующие признаки: плоские, мелкие, неправильной формы безъядерные образования, живущие несколько суток?

12. Из чего в основном состоит тромб

13. Выберите правильный вариант, описывающий образование тромба: под действием X растворенный в крови Y превращается в Z

Источник: http://www.bio-faq.ru/viii/VIII-045.html

Механизм свертывания крови

Свертывание крови является важной защитной реакцией организма, препятствующей кровопотере и тем самым сохраняющей постоянство объема циркулирующей крови.

Сущность процесса свертывания крови заключается в переходе растворимого белка плазмы крови фибриногена в нерастворимый нитевидный белок фибрин, образующий основу кровяного сгустка — тромба.

В механизме свертывания крови выделяют три фазы. При разрыве тканей и стенок сосудов, повреждении эритроцитов и тромбоцитов высвобождается фермент тромбопластин, который совместно с факторами свертывания крови и ионами Сa 2+ способствует образованию фермента протромбиназы (фаза I). Протромбиназа превращает неактивный фермент протромбин в активный фермент тромбин (фаза II). В фазе III при участии тромбина и ионов Сa 2+ происходит превращение фибриногена в фибрин.

Наследственный дефицит факторов VIII, IX и XI приводит к несвертываемости крови — гемофилии формы А, В и С соответственно.

При повышенной свертываемости крови возникают внутренние тромбы, например в сосудах сердца (инфаркт миокарда), мозговых сосудах (инсульт), легочной артерии и т. д.

В крови имеется и антисвертывающая система. Одним из мощных антикоагулянтов является гепарин, образуемый базофилами крови и тучными клетками соединительной ткани.

Источник: http://jbio.ru/mexanizm-svertyvaniya-krovi

Свертывающая и антисвертывающая системы крови.

Сущность и значение свертывания крови.

Если выпущенную из кровеносного сосуда кровь оставить на некоторое время, то из жидкости она вначале превращается в желе, а затем в крови организуется более или менее плотный сгусток, который, сокращаясь, выжимает из себя жидкость, называемую кровяной сывороткой. Это — плазма, лишенная фибрина. Описанный процесс называется свертыванием крови (гемокоагуляцией). Его сущность заключается в том, что растворенный в плазме белок фибриноген в определенных условиях переходит в нерастворимое состояние и выпадает в осадок в виде длинных нитей фибрина. В ячейках этих нитей, как в сетке, застревают клетки и коллоидное состояние крови в целом меняется. Значение этого процесса заключается в том, что свернувшаяся кровь не вытекает из раненного сосуда, предотвращая смерть организма от кровопотери.

Свертывающая система крови. Ферментативная теория свертывания.

Первая теория, объясняющая процесс свертывания крови работой специальных ферментов, была разработана в 1902 г. русским ученым Шмидтом. Он считал, что свертывание протекает в две фазы. В первую один из белков плазмы протромбин под влиянием освобождающихся из разрушенных при травме клеток крови, особенно тромбоцитов, ферментов (тромбокиназы) и ионов Са переходит в фермент тромбин. На второй стадии под влиянием фермента тромбина растворенный в крови фибриноген превращается в нерастворимый фибрин, который и заставляет кровь свертываться. В последние годы жизни Шмидт стал выделять в процессе гемокоагуляции уже 3 фазы: 1- образование тромбокиназы, 2- образование тромбина. 3- образование фибрина.

Дальнейшее изучение механизмов свертывания показало, что это представление весьма схематично и не полностью отражает весь процесс. Основное заключается в том, что в организме отсутствует активная тромбокиназа, т.е. фермент, способный превратить протромбин в тромбин (по новой номенклатуре ферментов этот следует называть протромбиназой). Оказалось, что процесс образования протромбиназы очень сложен, в нем участвует целый ряд т.н. тромбогенных белков-ферментов, или тромбогенных факторов, которые, взаимодействуя в каскадном процессе, все необходимы для того, чтобы свертывание крови осуществилось нормально. Кроме того, было обнаружено, что процесс свертывания не кончается образованием фибрина, ибо одновременно начинается его разрушение. Таким образом, современная схема свертывания крови значительно сложнее Шмидтовой.

Современная схема свертывания крови включает в себя 5 фаз, последовательно сменяющих друг друга. Фазы эти следующие:

1. Образование протромбиназы.

2. Образование тромбина.

3. Образование фибрина.

4. Полимеризация фибрина и организация сгустка.

За последние 50 лет было открыто множество веществ, принимающих участие в свертывании крови, белков, отсутствие которых в организме приводит к гемофилии (не свертываемости крови). Рассмотрев все эти вещества, международная конференция гемокоагулологов постановила обозначить все плазменные факторы свертывания римскими цифрами, клеточные — арабскими. Это было сделано для того, чтобы исключить путаницу в названиях. И теперь в любой стране после общепринятого в ней названия фактора (они могут быть разными) обязательно указывается номер этого фактора по международной номенклатуре. Для того, чтобы мы могли дальше рассматривать схему свертывания, давайте сначала дадим краткую характеристику этих факторов.

А. Плазменные факторы свертывания .

I. Фибрин и фибриноген. Фибрин — конечный продукт реакции свертывания крови. Свертывание фибриногена, являющееся его биологической особенностью, происходит не только под влиянием специфического фермента — тромбина, но может быть вызвано ядами некоторых змей, папаином и другими химическими веществами. В плазме содержится 2-4 г/л. Место образования — ретикулоэндотелиальная система, печень, костный мозг.

II. Тромбин и протромбин. В циркулирующей крови в норме обнаруживаются лишь следы тромбина. Молекулярный вес его составляет половину молекулярного веса протромбина и равен 30 тыс. Неактивный предшественник тромбина — протромбин — всегда присутствует в циркулирующей крови. Это гликопротеид, в составе которого насчитывают 18 аминокислот. Некоторые исследователи полагают, что протромбин — это комплексное соединение тромбина и гепарина. В цельной крови содержитсямг% протромбина. Этого содержания в избытке хватает для того, чтобы перевести весь фибриноген крови в фибрин.

Уровень протромбина в крови представляет собой относительно постоянную величину. Из моментов, вызывающих колебания этого уровня, следует указать на менструации (повышают), ацидоз (снижает). Прием 40% алкоголя увеличивает содержание протромбина на% cпустя 0,5-1 час, что объясняет наклонность к тромбозам у лиц, систематически употребляющих алкоголь.

В организме протромбин постоянно используется и одновременно синтезируется. Важную роль в его образовании в печени играет антигеморрагический витамин К. Он стимулирует деятельность печеночных клеток, синтезирующих протромбин.

III. Тромбопластин. В крови этого фактора в активном виде нет. Он образуется при повреждении клеток крови и тканей и может быть соответственно кровяной, тканевой, эритроцитарный, тромбоцитарный. По своей структуре это фосфолипид, аналогичный фосфолипидам клеточных мембран. По тромбопластической активности ткани различных органов по убывающей располагаются в таком порядке: легкие, мышцы, сердце, почки, селезенка, мозг, печень. Источниками тромбопластина являются также женское молоко и околоплодная жидкость. Тромбопластин участвует как обязательный компонент в первой фазе свертывания крови.

IV. Кальций ионизированный, Са++. Роль кальция в процессе свертывания крови была известна еще Шмидту. Именно тогда в качестве консерванта крови им был предложен цитрат натрия — раствор, который связывал ионы Са++ в крови и предотвращал ее свертывание. Кальций необходим не только для превращения протромбина в тромбин, но для других промежуточных этапов гемостаза, во всех фазах свертывания. Содержание ионов кальция в крови 9-12 мг%.

V и VI. Проакцелерин и акцелерин (АС-глобулин). Образуется в печени. Участвует в первой и второй фазах свертывания, при этом количество проакцелерина падает, а акцелерина — увеличивается. По существу V является предшественником VI фактора. Активизируется тромбином и Са++. Является ускорителем (акцелератором) многих ферментативных реакций свертывания.

VII. Проконвертин и конвертин. Этот фактор является белком, входящим в бета глобулиновую фракцию нормальной плазмы или сыворотки. Активирует тканевую протромбиназу. Для синтеза проконвертина в печени необходим витамин К. Сам фермент становится активным при контакте в поврежденными тканями.

VIII. Антигемофилический глобулин А (АГГ-А). Участвует в образовании кровяной протромбиназы. Способен обеспечивать свертывание крови, не имевшей контакта с тканями. Отсутствие этого белка в крови является причиной развития генетически обусловленной гемофилии. Получен сейчас в сухом виде и применяется в клинике для ее лечения.

IX. Антигемофилический глобулин В (АГГ-В, Кристмас-фактор, плазменный компонент тромбопластина). Участвует в процессе свертывания как катализатор, а также входит в состав тромбопластического комплекса крови. Способствует активации Х фактора.

X. Фактор Коллера, Стьюард-Прауэр-фактор. Биологическая роль сводится к участию в процессах образования протромбиназы, так как он является ее основным компонентом. При свертывании утилизируется. Назван (как и все другие факторы) по именам больных, у которых была впервые обнаружена форма гемофилии, связанная с отсутствием указанного фактора в их крови.

XI. Фактор Розенталя, плазменный предшественник тромбопластина (ППТ). Участвует в качестве ускорителя в процессе образования активной протромбиназы. Относится к бета глобулинам крови. Вступает в реакцию на первых этапах 1 фазы. Образуется в печени с участием витамина К.

XII. Фактор контакта, Хагеман-фактор. Играет роль пускового механизма в свертывании крови. Контакт этого глобулина с чужеродной поверхностью (шероховатость стенки сосуда, поврежденные клетки т.п.) приводит к активации фактора и инициирует всю цепь процессов свертывания. Сам фактор адсорбируется на поврежденной поверхности и в кровоток не поступает, тем самым предупреждается генерализация процесса свертывания. Под влиянием адреналина (при стрессе) частично способен активизироваться прямо в кровотоке.

XIII. Фибринстабилизатор Лаки-Лоранда. Необходим для образования окончательно нерастворимого фибрина. Это — транспептидаза, которая сшивает отдельные нити фибрина пептидными связями, способствуя его полимеризации. Активируется тромбином и Са++. Кроме плазмы есть в форменных элементах и тканях.

Описанные 13 факторов являются общепризнанными основными компонентами, необходимыми для нормального процесса свертывания крови. Вызываемые их отсутствием различные формы кровоточивости относятся к разным видам гемофилий.

В. Клеточные факторы свертывания.

Наряду с плазменными факторами первостепенную роль в свертывании крови играют и клеточные, выделяющиеся из клеток крови. Больше всего их содержится в тромбоцитах, но есть они и в других клетках. Просто при гемокоагуляции тромбоциты разрушаются в большем количестве, чем, скажем, эритроциты или лейкоциты, поэтому наибольшее значение в свертывании имеют именно тромбоцитарные факторы. К ним относятся:

1ф. АС-глобулин тромбоцитов. Подобен V-VI факторам крови, выполняет те же функции, ускоряя образование протромбиназы.

2ф. Тромбин-акцелератор. Ускоряет действие тромбина.

3ф. Тромбопластический или фосполипидный фактор. Находится в гранулах в неактивном состоянии, и может использоваться только после разрушения тромбоцитов. Активируется при контакте с кровью, необходим для образования протромбиназы.

4ф.Антигепариновый фактор. Связывает гепарин и задерживает его антикоагулирующий эффект.

5ф. Тромбоцитарный фибриноген. Необходим для агрегации кровяных пластинок, вязкого их метаморфоза и консолидации тромбоцитарной пробки. Находится и внутри и снаружи тромбоцита. способствует их склеиванию.

6ф. Ретрактозим. Обеспечивает уплотнение тромба. В его составе определяют несколько субстанций, например тромбостенин +АТФ +глюкоза.

7ф. Антифибинозилин. Тормозит фибринолиз.

8ф. Серотонин. Вазоконстриктор. Экзогенный фактор, 90% синтезируется в слизистой ЖКТ, остальные 10% — в тромбоцитах и ЦНС. Выделяется из клеток при их разрушении, способствует спазму мелких сосудов, те самым способствуя предотвращению кровотечения.

Всего в тромбоцитах находят до 14 факторов, таких еще, как антитромбопластин, фибриназа, активатор плазминогена, стабилизатор АС-глобулина, фактор агрегации тромбоцитов и др.

В других клетках крови в основном находятся эти же факторы, но заметной роли в гемокоагуляции в норме они не играют.

С. Тканевые факторы свертывания

Участвуют во всех фазах. Сюда относятся активные тромбопластические факторы, подобные III, VII,IX,XII,XIII факторам плазмы. В тканях есть активаторы V и VI факторов. Много гепарина, особенно в легких, предстательной железе, почках. Есть и антигепариновые вещества. При воспалительных и раковых заболеваниях активность их повышается. В тканях много активаторов (кинины) и ингибиторов фибринолиза. Особенно важны вещества, содержащиеся в сосудистой стенке. Все эти соединения постоянно поступают из стенок сосудов в кровь и осуществляют регуляцию свертывания. Ткани обеспечивают также и выведение продуктов свертывания из сосудов.

Современная схема гемостаза .

Попытаемся теперь объединить в одну общую систему все факторы свертывания и разберем современную схему гемостаза .

Цепная реакция свертывания крови начинается с момента соприкосновения крови с шероховатой поверхностью раненного сосуда или тканью. Это вызывает активацию тромбопластических факторов плазмы и затем происходит поэтапное образование двух отчетливо различающихся по своим свойствам протромбиназ — кровяной и тканевой..

Однако прежде, чем закончится цепная реакция образования протромбиназы, в месте повреждения сосуда происходят процессы, связанные с участием тромбоцитов (т.н. сосудисто-тромбоцитарный гемостаз). Тромбоциты за счет своей способности к адгезии налипают на поврежденный участок сосуда, налипают друг на друга, склеиваясь тромбоцитарным фибриногеном. Все это приводит к образованию т.н. пластинчатого тромба («тромбоцитарный гемостатический гвоздь Гайема»). Адгезия тромбоцитов происходит за счет АДФ, выделяющейся из эндотелия и эритроцитов. Этот процесс активируется коллагеном стенки, серотонином, XIII фактором и продуктами контактной активации. Сначала (в течение 1-2 минут) кровь еще проходит через эту рыхлую пробку, но затем происходит т.н. вискозное перерождение тромба, он уплотняется и кровотечение останавливается. Понятно что такой конец событий возможен только при ранении мелких сосудов, там, где артериальное давление не в состоянии выдавить этот «гвоздь».

1 фаза свертывания . В ходе первой фазы свертывания, фазе образования протромбиназы, различают два процесса, которые протекают с разной скоростью и имеют различное значение. Это — процесс образования кровяной протромбиназы, и процесс образования тканевой протромбиназы. Длительность 1 фазы составляет 3-4 минуты. однако, на образование тканевой протромбиназы тратится всего 3-6 секунд. Количество образующейся тканевой протромбиназы очень мало, ее недостаточно для перевода протромбина в тромбин, однако тканевая протромбиназа выполняет роль активатора целого ряда факторов, необходимых для быстрого образования кровяной протромбиназы. В частности, тканевая протромбиназа приводит к образованию малого количества тромбина, который переводит в активное состояние V и VIII факторы внутреннего звена коагуляции. Каскад реакций, заканчивающихся образованием тканевой протромбиназы (внешний механизм гемокоагуляции), выглядит следующим образом:

1. Контакт разрушенных тканей с кровью и активация III фактора — тромбопластина.

2. III фактор переводит VII в VIIa (проконвертин в конвертин).

3.Образуется комплекс (Ca++ + III + VIIIa)

4. Этот комплекс активирует небольшое количество Х фактора — Х переходит в Ха.

5. (Хa + III + Va + Ca) образуют комплекс, который и обладает всеми свойствами тканевой протромбиназы. Наличие Va (VI) связано с тем, что в крови всегда есть следы тромбина, который активирует V фактор.

6. Образовавшееся небольшое количество тканевой протромбиназы переводит небольшое количество протромбина в тромбин.

7. Тромбин активирует достаточное количество V и VIII факторов, необходимых для образования кровяной протромбиназы.

В случае выключения этого каскада (например, если со всею предосторожностью с использованием парафинированных игл, взять кровь из вены, предотвратив ее контакт с тканями и с шероховатой поверхностью, и поместить ее в парафинированную пробирку), кровь свертывается очень медленно, в течениеминут и дольше.

Ну, а в норме одновременно с уже описанным процессом запускается и другой каскад реакций, связанных с действием плазменных факторов, и заканчивающийся образованием кровяной протромбиназы в количестве, достаточном для перевода большого количества протромбина с тромбин. Реакции эти следующие ( внутренний механизм гемокоагуляции):

1. Контакт с шероховатой или чужеродной поверхностью приводит к активации XII фактора : XII — XIIa. Одновременно начинает образовываться гемостатический гвоздь Гайема (сосудисто-тромбоцитарный гемостаз).

3. Под влиянием указанного комплекса IX фактор активизируется и образуется комплекс IXa + Va + Cа++ +III(ф3).

4. Под влиянием этого комплекса происходит активация значительного количества Х фактора, после чего в большом количестве образуется последний комплекс факторов: Xa + Va + Ca++ + III(ф3), который и носит название кровяная протромбиназа.

На весь этот процесс затрачивается в норме около 4-5 минут, после чего свертывание переходит в следующую фазу.

2 фаза свертывания — фаза образования тромбина заключается в том, что под влиянием фермента протромбиназы II фактор (протромбин) переходит в активное состояние (IIa). Это протеолитический процесс, молекула протромбина расщепляется на две половинки. Образовавшийся тромбин идет на реализацию следующей фазы, а также используется в крови для активации все большего количества акцелерина (V и VI факторов). Это пример системы с положительной обратной связью. Фаза образования тромбина продолжается несколько секунд.

3 фаза свертывания — фаза образования фибрина — тоже ферментативный процесс, в результате которого от фибриногена благодаря воздействию протеолитического фермента тромбина отщепляется кусок в несколько аминокислот, а остаток носит название фибрин-мономер, который по своим свойствам резко отличается от фибриногена. В частности, он способен к полимеризации. Это соединение обозначается как Im.

4 фаза свертывания — полимеризация фибрина и организация сгустка. Она тоже имеет несколько стадий. Вначале за несколько секунд под влиянием рН крови, температуры, ионного состава плазмы происходит образование длинных нитей фибрин-полимера Is который, однако, еще не очень стабилен, так как способен растворяться в растворах мочевины. Поэтому на следующей стадии под действием фибрин-стабилизатора Лаки-Лоранда (XIII фактора) происходит окончательная стабилизация фибрина и превращение его в фибрин Ij. Он выпадает из раствора в виде длинных нитей, которые образуют сетку в крови, в ячейках которой застревают клетки. Кровь из жидкого состояния переходит в желеобразное (свертывается). Следующей стадией этой фазы является длящаяся достаточно долго (несколько минут) ретракия (уплотнение) сгустка, которая происходит за счет сокращения нитей фибрина под действием ретрактозима (тромбостенина). В результате сгусток становится плотным, из него выжимается сыворотка, а сам сгусток превращается в плотную пробку, перекрывающую сосуд — тромб.

5 фаза свертывания — фибринолиз. Хотя она фактически не связана с образованием тромба, ее считают последней фазой гемокоагуляции, так как в ходе этой фазы происходит ограничение тромба только той зоной, где он действительно необходим. Если тромб полностью закрыл просвет сосуда, то в ходе этой фазы этот просвет восстанавливается (происходит реканализация тромба). Практически фибринолиз всегда идет параллельно с образованием фибрина, предотвращая генерализацию свертывания и ограничивая процесс. Растворение фибрина обеспечивается протеолитическим ферментом плазмином (фибринолизином) который содержится в плазме в неактивном состоянии в виде плазминогена (профибринолизина). Переход плазминогена в активное состояние осуществляется специальным активатором, который в свою очередь образуется из неактивных предшественников (проактиваторов), высвобождающихся из тканей, стенок сосудов, клеток крови, особенно тромбоцитов. В процессах перевода проактиваторов и активаторов плазминогена в активное состояние большую роль играют кислые и щелочные фосфатазы крови, трипсин клеток, тканевые лизокиназы, кинины, реакция среды, XII фактор. Плазмин расщепляет фибрин на отдельные полипептиды, которые затем утилизируются организмом.

В норме кровь человека начинает свертываться уже через 3-4 минуты после вытекания из организма. Через 5-6 минут она полностью превращается в желеобразный сгусток. Способы определения времени кровотечения, скорости свертывания крови и протромбинового времени вы узнаете на практических занятиях. Все они имеют важное клиническое значение.

Ингибиторы свертывания (антикоагулянты). Постоянство крови как жидкой среды в физиологических условиях поддерживается совокупностью ингибиторов, или физиологических антикоагулянтов, блокирующих или нейтрализующих действие коагулянтов (факторов свертывания). Антикоагулянты являются нормальными компонентами системы функциональной системы гемокоагуляции.

В настоящее время доказано, что существует ряд ингибиторов по отношению к каждому фактору свертывания крови, и, однако, наиболее изученным и имеющим практическое значение является гепарин. Гепарин — это мощный тормоз превращения протромбина в тромбин. Кроме того, он влияет на образование тромбопластина и фибрина.

Гепарина много в печени, мышцах и легких, чем и объясняется не свертываемость крови в малом круге кровотечения и связанная с этим опасность легочных кровотечений. Кроме гепарина обнаружено еще несколько естественных антикоагулянтов с антитромбиновым действием, их принято обозначать порядковыми римскими цифрами:

I. Фибрин (поскольку он в процессе свертывания поглощает тромбин).

III. Естественные антитромбины (фосфолипопротеиды).

IV. Антипротромбин (препятствующий превращению протромбина в тромбин).

V. Антитромбин крови больных ревматизмом.

VI. Антитромбин, возникающий при фибринолизе.

Кроме этих физиологических антикоагулянтов многие химические вещества различного происхождения обладают антикоагулянтной активностью — дикумарин, гирудин (из слюны пиявок) и др. Эти препараты применятся в клинике при лечении тромбозов.

Препятствует свертыванию крови и фибринолитическая система крови. По современным представлениям она состоит из профибринолизина (плазминогена), проактиватора и системы плазменных и тканевых активаторов плазминогена. Под влиянием активаторов плазминоген переходит в плазмин, который растворяет сгусток фибрина.

В естественных условиях фибринолитическая активность крови находится в зависимости от депо плазминогена, плазменного активатора, от условий, обеспечивающих процессы активации, и от поступления этих веществ в кровь. Спонтанная активность плазминогена в здоровом организме наблюдается при состоянии возбуждения, после инъекции адреналина, при физических напряжениях и при состояниях, связанных с шоком. Среди искусственных блокаторов фибринолитической активности крови особое место занимает гамма аминокапроновая кислота (ГАМК). В норме в плазме содержится количество ингибиторов плазмина, превышающее в 10 раз уровень запасов плазминогена в крови.

Состояние процессов гемокоагуляции и относительное постоянство или динамическое равновесие факторов свертывания и антисвертывания связано с функциональным состоянием органов системы гемокоагуляции (костного мозга, печени, селезенки, легких, сосудистой стенки). Деятельность последних, а следовательно, и состояние процесса гемокоагуляции, регулируется нервно-гуморальными механизмами. В кровеносных сосудах имеются специальные рецепторы, воспринимающих концентрацию тромбина и плазмина. Эти два вещества и программируют деятельность указанных систем.

Регуляция процессов гемокоагуляции и антигоагуляции.

Рефлекторные влияния. Важное место среди многих раздражителей, падающих на организм, занимает болевое раздражение. Боль приводит к изменению деятельности почти всех органов и систем, в том числе и системы свертывания. Кратковременное или длительное болевое раздражение ведет к ускорению свертывания крови, сопровождаемое тромбоцитозом. Присоединение к боли чувства страха приводит к еще более резкому ускорению свертывания. Болевое раздражение, нанесенное анестезированному участку кожи, не вызывает ускорения свертывания. Такой эффект наблюдается с первого дня рождения.

Большое значение имеет продолжительность болевого раздражения. При кратковременной боли сдвиги менее выражены и возврат к норме совершается в 2-3 раза быстрей, чем при длительном раздражении. Это дает основание полагать, что в первом случае принимает участие лишь рефлекторный механизм, а при длительном болевом раздражении включается и гуморальное звено, обусловливая продолжительность наступающих изменений. Большинство ученых полагает, что таким гуморальным звеном при болевом раздражении является адреналин.

Значительное ускорение свертывания крови происходит рефлекторно также при действии на организм тепла и холода. После прекращения теплового раздражения период восстановления до исходного уровня в 6-8 раз короче, чем после холодового.

Свертывание крови является компонентом ориентировочной реакции. Изменение внешней среды, неожиданное появление нового раздражителя вызывают ориентировочную реакцию и одновременно ускорение свертывания крови, что является биологически целесообразной защитной реакцией.

Влияние вегетативной нервной системы. При раздражении симпатических нервов или после инъекции адреналина свертывание ускоряется. Раздражение парасимпатического отдела НС приводит к замедлению свертывания. Показано, что вегетативная нервная система оказывает влияние на биосинтез прокоагулянтов и антикоагулянтов в печени. Имеются все основания полагать, что влияние симпатико-адреналовой системы распространяется преимущественно на факторы свертывания крови, а парасимпатической — преимущественно на факторы, препятствующие свертыванию крови. В период остановки кровотечения оба отдела ВНС выступают синергично. Их взаимодействие в первую очередь направлено на остановку кровотечения, что жизненно важно. В дальнейшем, после надежной остановки кровотечения, усиливается тонус парасимпатической НС, что приводит к повышению антикоагулятной активности, столь важной для профилактики внутрисосудистых тромбозов.

Эндокринная система и свертывание. Эндокринные железы являются важным активным звеном механизма регуляции свертывания крови. Под влиянием гормонов процессы свертывания крови претерпевают ряд изменений, а гемокоагуляция либо ускоряется, либо замедляется. Если сгруппировать гормоны по их действию на свертывание крови, то к ускоряющим свертывание будут относиться АКТГ, СТГ, адреналин, кортизон, тестостерон, прогестерон, экстракты задней доли гипофиза, эпифиза и зобной железы; замедляют свертывание тиреотропный гормон, тироксин и эстрогены.

Во всех приспособительных реакциях, в особенности протекающих с мобилизацией защитных сил организма, в поддержании относительного постоянства внутренней среды вообще и системы свертывания крови, в частности, гипофизарно-анреналовая система является важнейшим звеном нейрогуморального механизма регуляции.

Имеется значительное количество данных, свидетельствующих о наличии влияния коры головного мозга на свертывание крови. Так, свертывание крови изменяется при повреждении полушарий головного мозга, при шоке, наркозе, эпилептическом припадке. Особый интерес представляют изменения скорости свертывания крови в гипнозе, когда человеку внушают, что он ранен, и в это время свертываемость возрастает так: как будто это происходит в действительности.

Противосвертывающая система крови.

Еще в 1904 году известный немецкий ученый — коагулолог Моравиц впервые высказал предположение о наличие в организме противосвертывающей системы, которая сохраняет кровь в жидком состоянии, а также о том что свертывающая и антисвертывающая системы, находятся в состоянии динамического равновесия.

Позже эти предположения подтвердились в лаборатории, возглавляемой профессором Кудряшовым. В 30-е годы был получен тромбин, который вводился крысам с целью вызвать свертывание крови в сосудах. Оказалось, что кровь в этом случае вообще перестала свертываться. Значит, тромбин активизировал какую-то систему, которая препятствует свертыванию крови в сосудах. На основании этого наблюдения , Кудряшов пришел также к выводу о наличии противосвертывающей системы.

Под противосвертывающей системой следует понимать совокупность органов и тканей, которые синтезируют и утилизируют группу факторов, обеспечивающих жидкое состояние крови, то есть препятствующих свертыванию крови в сосудах. К таким органам и тканям относятся сосудистая система, печень, некоторые клетки крови и др. Эти органы и ткани вырабатывают вещества, которые получили на звание ингибиторов свертывания крови или естественных антикоагулянтов. Они вырабатываются в организме постоянно, в отличие от искусственных, которые вводятся при лечении претромбических состояний.

Ингибиторы свертывания крови действуют по фазам. Предполагается, что механизм их действия заключается либо в разрушении, либо в связывании факторов свертывания крови.

В 1 фазе в качестве антикоагулянтов срабатывают: гепарин (универсальный ингибитор) и антипротромбиназы.

Во 2 фазе срабатывают ингибиторы тромбина: фибриноген, фибрин с продуктами своего распада — полипептиды, продукты гидролиза тромбина, претромбин 1 и II, гепарин и естественный антитромбин 3, который относится к группе глюкозоаминогликанов.

При некоторых патологических состояниях, например, заболевания сердечно — сосудистой системы, в организме появляются дополнительные ингибиторы.

Наконец, имеет место ферментативный фибринолиз, ( фибринолитическая система) протекающий в 3 фазы. Так, если в организме много образуется фибрина или тромбина, то моментально включается фибринолитическая система и происходит гидролиз фибрина. Большое значение в сохранении жидкого состояния крови имеет неферментативный фибринолиз, о котором говорилось раньше.

По Кудряшову различают две противосвертывающие системы:

I-ая имеет гуморальную природу. Она срабатывает постоянно, осуществляя выброс всех уже перечисленных антикоагулянтов, исключая гепарин. II-ая — аварийная противосвертывающая система, которая обусловлена нервными механизмами, связанными с функциями определенных нервных центров. Когда в крови накапливается угрожающее количество фибрина или тромбина, происходит раздражение соответствующих рецепторов, что через нервные центры активизирует противосвертывающую систему.

Как свертывающая, так и противосвертывающая система регулируются. Давно было замечено, что под влиянием нервной системы, а также некоторых веществ, происходит либо гипер-, либо гипокоагуляция. Например, при сильном болевом синдроме, имеющем место при родах, может развиваться тромбоз в сосудах. Под влиянием стрессовых напряжений также могут образовываться в сосудах тромбы.

Свертывающая и антисвертывающая системы взаимосвязаны, находятся под контролем как нервных, так и гуморальных механизмов.

Можно предположить, что существует функциональная система, обеспечивающая свертывание крови, которая состоит из воспринимающего звена, представленного специальными хеморецепторами, заложенными в сосудистых рефлексогенных зонах (дуга аорты и синокаротидная зона), которые улавливают факторы, обеспечивающие свертывание крови. Второе звено функциональной системы — это механизмы регуляции. К ним относятся нервный центр, получающий информацию с рефлексогенных зон. Большинство ученых предполагает, что этот нервный центр, обеспечивающий регуляцию свертывающей системы, находится в области гипоталамуса. Эксперименты над животными показывают, что при раздражении задней части гипоталамуса имеет место чаще гиперкоагуляция, а при раздражении передней части — гипокоагуляция. Эти наблюдения доказывают влияние гипоталамуса на процесс свертывания крови, и наличие в нем соответствующих центров. Через этот нервный центр осуществляется контроль за синтезом факторов, обеспечивающих свертывание крови .

К гуморальным механизмам относятся вещества, меняющие скорость свертывания крови. Это прежде всего гормоны: АКТГ, СТГ, глюкокортикоиды, ускоряющие свертывание крови; инсулин действует двуфазно — в течение первых 30 минут ускоряет свертывание крови, а затем в течение нескольких часов — замедляет.

Минералокортикоиды (альдостерон) снижают скорость свертывания крови. Половые гормоны действуют по-разному: мужские ускоряют свертывание крови, женские действуют двояко: одни из них увеличивают скорость свертывание крови — гормоны желтого тела. другие же, замедляют (эстрогены)

Третье звено — органы — исполнители, к которым, прежде всего, относится печень, вырабатывающая факторы свертывания, а также клетки ретикулярной системы.

Как работает функциональная система? Если концентрация каких — либо факторов обеспечивающих процесс свертывания крови, возрастает или падает, то это воспринимается хеморецепторами. Информация от них идет в центр регуляции свертывания крови, а затем на органы — исполнители, и по принципу обратной связи их выработка или тормозится или увеличивается.

Регулируется также и антисвертывающая система, обеспечивающая крови жидкое состояние. Воспринимающее звено этой функциональной системы находится в сосудистых рефлексогенных зонах и представлено специфическими хеморецепторами, улавливающими концентрацию антикоагулянтов. Второе звено представлено нервным центром противосвертывающей системы. По данным Кудряшова, он находится в продолговатом мозге, что доказывается рядом экспериментов. Если, например, выключить его такими вещества ми, как аминозин, метилтиурацил и другими, то кровь начинает свертываться в сосудах. К исполнительным звеньям относятся органы, синтезирующие антикоагулянты. Это сосудистая стенка, печень, клетки крови. Срабатывает функциональная система, препятствующая свертыванию крови следующим образом: много антикоагулянтов — их синтез тормозится, мало — возрастает (принцип обратной связи).

ОБНОВЛЕНИЯ

ПРЕДМЕТЫ

О НАС

«Dendrit» — портал для студентов медицинских ВУЗов, включающий в себя собрание актуальных учебных материалов (учебники, лекции, методические пособия, фотографии анатомических и гистологических препаратов), которые постоянно обновляются.

Источник: http://dendrit.ru/page/show/mnemonick/svertyvayuschaya-i-antisvertyvayuschaya

Свертывание крови и его биологическое значение. Скорость свертывания у взрослого человека и новорожденного. Факторы свертывания крови.

Если выпущенную из кровеносного сосуда кровь оставить на некоторое время, то из жидкости она вначале превращается в желе, а затем в крови организуется более или менее плотный сгусток, который, сокращаясь, выжимает из себя жидкость, называемую кровяной сывороткой. Это — плазма, лишенная фибрина. Описанный процесс называется свертыванием крови(гемокоагуляцией). Его сущность заключается в том, что растворенный в плазме белок фибриноген в определенных условиях переходит в нерастворимое состояние и выпадает в осадок в виде длинных нитей фибрина. В ячейках этих нитей, как в сетке, застревают клетки и коллоидное состояние крови в целом меняется. Значение этого процесса заключается в том, что свернувшаяся кровь не вытекает из раненного сосуда, предотвращая смерть организма от кровопотери.

Свертывающая система крови. Ферментативная теория свертывания.

Первая теория, объясняющая процесс свертывания крови работой специальных ферментов, была разработана в 1902 г. русским ученым Шмидтом. Он считал, что свертывание протекает в две фазы. В первую один из белков плазмы протромбин под влиянием освобождающихся из разрушенных при травме клеток крови, особенно тромбоцитов, ферментов (тромбокиназы) иионов Са переходит в фермент тромбин. На второй стадии под влиянием фермента тромбина растворенный в крови фибриноген превращается в нерастворимый фибрин, который и заставляет кровь свертываться. В последние годы жизни Шмидт стал выделять в процессе гемокоагуляции уже 3 фазы: 1- образование тромбокиназы, 2- образование тромбина. 3- образование фибрина.

Дальнейшее изучение механизмов свертывания показало, что это представление весьма схематично и не полностью отражает весь процесс. Основное заключается в том, что в организме отсутствует активная тромбокиназа, т.е. фермент, способный превратить протромбин в тромбин (по новой номенклатуре ферментов этот следует называть протромбиназой). Оказалось, что процесс образования протромбиназы очень сложен, в нем участвует целый ряд т.н. тромбогенных белков-ферментов, или тромбогенных факторов, которые, взаимодействуя в каскадном процессе, все необходимы для того, чтобы свертывание крови осуществилось нормально. Кроме того, было обнаружено, что процесс свертывания не кончается образованием фибрина, ибо одновременно начинается его разрушение. Таким образом, современная схема свертывания крови значительно сложнее Шмидтовой.

Современная схема свертывания крови включает в себя 5 фаз, последовательно сменяющих друг друга. Фазы эти следующие:

1. Образование протромбиназы.

2. Образование тромбина.

3. Образование фибрина.

4. Полимеризация фибрина и организация сгустка.

За последние 50 лет было открыто множество веществ, принимающих участие в свертывании крови, белков, отсутствие которых в организме приводит к гемофилии (не свертываемости крови). Рассмотрев все эти вещества, международная конференция гемокоагулологов постановила обозначить все плазменные факторы свертывания римскими цифрами, клеточные — арабскими. Это было сделано для того, чтобы исключить путаницу в названиях. И теперь в любой стране после общепринятого в ней названия фактора (они могут быть разными) обязательно указывается номер этого фактора по международной номенклатуре. Для того, чтобы мы могли дальше рассматривать схему свертывания, давайте сначала дадим краткую характеристику этих факторов.

I. Фибрин и фибриноген. Фибрин — конечный продукт реакции свертывания крови. Свертывание фибриногена, являющееся его биологической особенностью, происходит не только под влиянием специфического фермента — тромбина, но может быть вызвано ядами некоторых змей, папаином и другими химическими веществами. В плазме содержится 2-4 г/л. Место образования — ретикулоэндотелиальная система, печень, костный мозг.

II. Тромбин и протромбин. В циркулирующей крови в норме обнаруживаются лишь следы тромбина. Молекулярный вес его составляет половину молекулярного веса протромбина и равен 30 тыс. Неактивный предшественник тромбина — протромбин — всегда присутствует в циркулирующей крови. Это гликопротеид, в составе которого насчитывают 18 аминокислот. Некоторые исследователи полагают, что протромбин — это комплексное соединение тромбина и гепарина. В цельной крови содержитсямг% протромбина. Этого содержания в избытке хватает для того, чтобы перевести весь фибриноген крови в фибрин.

Уровень протромбина в крови представляет собой относительно постоянную величину. Из моментов, вызывающих колебания этого уровня, следует указать на менструации (повышают), ацидоз (снижает). Прием 40% алкоголя увеличивает содержание протромбина на% cпустя 0,5-1 час, что объясняет наклонность к тромбозам у лиц, систематически употребляющих алкоголь.

В организме протромбин постоянно используется и одновременно синтезируется. Важную роль в его образовании в печени играет антигеморрагический витамин К. Он стимулирует деятельность печеночных клеток, синтезирующих протромбин.

III. Тромбопластин. В крови этого фактора в активном виде нет. Он образуется при повреждении клеток крови и тканей и может быть соответственно кровяной, тканевой, эритроцитарный, тромбоцитарный. По своей структуре это фосфолипид, аналогичный фосфолипидам клеточных мембран. По тромбопластической активности ткани различных органов по убывающей располагаются в таком порядке: легкие, мышцы, сердце, почки, селезенка, мозг, печень. Источниками тромбопластина являются также женское молоко и околоплодная жидкость. Тромбопластин участвует как обязательный компонент в первой фазе свертывания крови.

IV. Кальций ионизированный, Са++. Роль кальция в процессе свертывания крови была известна еще Шмидту. Именно тогда в качестве консерванта крови им был предложен цитрат натрия — раствор, который связывал ионы Са++ в крови и предотвращал ее свертывание. Кальций необходим не только для превращения протромбина в тромбин, но для других промежуточных этапов гемостаза, во всех фазах свертывания. Содержание ионов кальция в крови 9-12 мг%.

V и VI. Проакцелерин и акцелерин (АС-глобулин). Образуется в печени. Участвует в первой и второй фазах свертывания, при этом количество проакцелерина падает, а акцелерина — увеличивается. По существу V является предшественником VI фактора. Активизируется тромбином и Са++. Является ускорителем (акцелератором) многих ферментативных реакций свертывания.

VII. Проконвертин и конвертин. Этот фактор является белком, входящим в бета глобулиновую фракцию нормальной плазмы или сыворотки. Активирует тканевую протромбиназу. Для синтеза проконвертина в печени необходим витамин К. Сам фермент становится активным при контакте в поврежденными тканями.

VIII. Антигемофилический глобулин А (АГГ-А). Участвует в образовании кровяной протромбиназы. Способен обеспечивать свертывание крови, не имевшей контакта с тканями. Отсутствие этого белка в крови является причиной развития генетически обусловленной гемофилии. Получен сейчас в сухом виде и применяется в клинике для ее лечения.

IX. Антигемофилический глобулин В (АГГ-В, Кристмас-фактор, плазменный компонент тромбопластина). Участвует в процессе свертывания как катализатор, а также входит в состав тромбопластического комплекса крови. Способствует активации Х фактора.

X. Фактор Коллера, Стьюард-Прауэр-фактор. Биологическая роль сводится к участию в процессах образования протромбиназы, так как он является ее основным компонентом. При свертывании утилизируется. Назван (как и все другие факторы) по именам больных, у которых была впервые обнаружена форма гемофилии, связанная с отсутствием указанного фактора в их крови.

XI. Фактор Розенталя, плазменный предшественник тромбопластина (ППТ). Участвует в качестве ускорителя в процессе образования активной протромбиназы. Относится к бета глобулинам крови. Вступает в реакцию на первых этапах 1 фазы. Образуется в печени с участием витамина К.

XII. Фактор контакта, Хагеман-фактор. Играет роль пускового механизма в свертывании крови. Контакт этого глобулина с чужеродной поверхностью (шероховатость стенки сосуда, поврежденные клетки т.п.) приводит к активации фактора и инициирует всю цепь процессов свертывания. Сам фактор адсорбируется на поврежденной поверхности и в кровоток не поступает, тем самым предупреждается генерализация процесса свертывания. Под влиянием адреналина (при стрессе) частично способен активизироваться прямо в кровотоке.

XIII. Фибринстабилизатор Лаки-Лоранда. Необходим для образования окончательно нерастворимого фибрина. Это — транспептидаза, которая сшивает отдельные нити фибрина пептидными связями, способствуя его полимеризации. Активируется тромбином и Са++. Кроме плазмы есть в форменных элементах и тканях.

Описанные 13 факторов являются общепризнанными основными компонентами, необходимыми для нормального процесса свертывания крови. Вызываемые их отсутствием различные формы кровоточивости относятся к разным видам гемофилий.

Наряду с плазменными факторами первостепенную роль в свертывании крови играют и клеточные, выделяющиеся из клеток крови. Больше всего их содержится в тромбоцитах, но есть они и в других клетках. Просто при гемокоагуляции тромбоциты разрушаются в большем количестве, чем, скажем, эритроциты или лейкоциты, поэтому наибольшее значение в свертывании имеют именно тромбоцитарные факторы. К ним относятся:

1ф. АС-глобулин тромбоцитов. Подобен V-VI факторам крови, выполняет те же функции, ускоряя образование протромбиназы.

2ф. Тромбин-акцелератор. Ускоряет действие тромбина.

3ф. Тромбопластический или фосполипидный фактор. Находится в гранулах в неактивном состоянии, и может использоваться только после разрушения тромбоцитов. Активируется при контакте с кровью, необходим для образования протромбиназы.

4ф.Антигепариновый фактор. Связывает гепарин и задерживает его антикоагулирующий эффект.

5ф. Тромбоцитарный фибриноген. Необходим для агрегации кровяных пластинок, вязкого их метаморфоза и консолидации тромбоцитарной пробки. Находится и внутри и снаружи тромбоцита. способствует их склеиванию.

6ф. Ретрактозим. Обеспечивает уплотнение тромба. В его составе определяют несколько субстанций, например тромбостенин +АТФ +глюкоза.

7ф. Антифибинозилин. Тормозит фибринолиз.

8ф. Серотонин. Вазоконстриктор. Экзогенный фактор, 90% синтезируется в слизистой ЖКТ, остальные 10% — в тромбоцитах и ЦНС. Выделяется из клеток при их разрушении, способствует спазму мелких сосудов, те самым способствуя предотвращению кровотечения.

Всего в тромбоцитах находят до 14 факторов, таких еще, как антитромбопластин, фибриназа, активатор плазминогена, стабилизатор АС-глобулина, фактор агрегации тромбоцитов и др.

В других клетках крови в основном находятся эти же факторы, но заметной роли в гемокоагуляции в норме они не играют.

Участвуют во всех фазах. Сюда относятся активные тромбопластические факторы, подобные III, VII,IX,XII,XIII факторам плазмы. В тканях есть активаторы V и VI факторов. Много гепарина, особенно в легких, предстательной железе, почках. Есть и антигепариновые вещества. При воспалительных и раковых заболеваниях активность их повышается. В тканях много активаторов (кинины) и ингибиторов фибринолиза. Особенно важны вещества, содержащиеся в сосудистой стенке. Все эти соединения постоянно поступают из стенок сосудов в кровь и осуществляют регуляцию свертывания. Ткани обеспечивают также и выведение продуктов свертывания из сосудов.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

© cyberpedia.suНе является автором материалов. Исключительное право сохранено за автором текста.

Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав

Источник: http://cyberpedia.su/5xb658.html

Свертывание крови, особенности и механизмы

Свертывающие механизмы

Свертывание крови (гемокоагуляция) – это жизненно важная защитная реакция, направленная на сохранение крови в сосудистой системе и предотвращающая гибель организма от кровопотери при травме сосудов. Основные положения ферментативной теории свертывания крови разработаны А. Шмидтом более 100 лет назад. В остановке кровотечения участвуют: сосуды, ткань, окружающая сосуды, физиологически активные вещества плазмы, форменные элементы крови, главная роль принадлежит тромбоцитам. Управляет этим нейрогуморальный регуляторный механизм. Физиологически активные вещества участвующие в свертывании крови и находящиеся в плазме, называются плазменными факторами свертывания крови, обозначаются римскими цифрами в порядке их открытия. Некоторые названия связанны с фамилией больного, у которого впервые обнаружен дефицит этого фактора. К плазменным факторам относятся: Iф – фибриноген, IIф – протромбин, IIIф – тканевой тромбопластин, IVф – ионы кальция, Vф – Ас-глобулин (ассеlеrаnсе – ускоряющий), или проакцелерин, VIф – исключен из номенклатуры, VIIф – проконвертин, VIIIф – антигемофильный глобулин А, IXф – антигемофильный глобулин В, или фактор Кристмаса, Xф – фактор Стюарта – Прауэра, XIф – плазменный предшественник тромбопластина, или антигемофильный глобулин С, XIIф – контактный фактор, или фактор Хагемана, XIIIф – фибринстабилизирующий фактор, или фибриназа, XIVф – фактор Флетчера (прокалликреин), XVф – фактор Фитцджеральда – Фложе (высокомолекулярный кининоген – ВМК). Большинство факторов образуется в печени. Для синтеза некоторых (II, VII, IX, X) необходим витамин К, содержащийся в растительной пище и синтезируемый микрофлорой кишечника. При недостатке активности факторов свертывания крови может наблюдаться патологическая кровоточивость. Это может происходить при заболеваниях печени, или недостаточности витамина К. Витамин К является жирорастворимым, его дефицит может обнаружиться при угнетении всасывания жиров в кишечнике, например при снижении желчеобразования или при подавлении кишечной микрофлоры антибиотиками. Ряд заболеваний наследственные (формы гемофилии, которыми болеют только мужчины, но передают их женщины).

Вещества, находящиеся в тромбоцитах, получили название тромбоцитарных, или пластинчатых, факторов свертывания крови. Их обозначают арабскими цифрами. К наиболее важным тромбоцитарным факторам относятся: ПФ-3 (тромбоцитарный тромбопластин) – липидно-белковый комплекс, на котором как на матрице происходит гемокоагуляция, ПФ-4 – антигепариновый фактор, ПФ-5 – благодаря которому тромбоциты способны к адгезии и агрегации, ПФ-6 (тромбостенин) – актиномиозиновый комплекс, обеспечивающий ретракцию тромба, ПФ-10 – серотонин, ПФ-11 – фактор агрегации, представляющий комплекс АТФ и тромбоксана. Аналогичные вещества открыты и в эритроцитах, и в лейкоцитах. При переливании несовместимой крови, резус-конфликте матери и плода происходит массовое разрушение эритроцитов и выход этих факторов в плазму, что является причиной интенсивного внутрисосудистого свертывания крови, При многих воспалительных и инфекционных заболеваниях также возникает диссеминированное (распространенное) внутрисосудистое свертывание крови (ДВС-синдром), причиной которого являются лейкоцитарные факторы свертывания крови.

По современным представлениям в остановке кровотечения участвуют 2 механизма: сосудисто-тромбоцитарный и коагуляционный.

Сосудисто-тромбоцитарный гемостаз - Благодаря этому механизму происходит остановка кровотечения из мелких сосудов с низким артериальным давлением. При травме наблюдается рефлекторный спазм поврежденных кровеносных сосудов, который в дальнейшем поддерживается сосудосуживающими веществами (серотонин, норадреналин, адреналин), освобождающимися из тромбоцитов и поврежденных клеток тканей. Внутренняя стенка сосудов в месте повреждения изменяет свой заряд с отрицательного на положительный. Благодаря способности к адгезии под влиянием фактора Виллебранда, содержащегося в субэндотелии и кровяных пластинках, отрицательно заряженные тромбоциты прилипают к положительно заряженной раневой поверхности. Практически одновременно происходит агрегация – скучиванье и склеивание тромбоцитов с образованием тромбоцитарной пробки, или тромба. Сначала под влиянием АТФ, АДФ и адреналина тромбоцитов и эритроцитов образуется рыхлая тромбоцитарная пробка, через которую проходит плазма (обратимая агрегация). Затем тромбоциты теряют свою структурность и сливаются в однообразную массу, образуя пробку, непроницаемую для плазмы (необратимая агрегация). Эта реакция протекает под действием тромбина, образующегося в небольших количествах под действием тканевого тромбопластина. Тромбин разрушает мембрану тромбоцитов, что ведет к выходу из них серотонина, гистамина, ферментов, факторов свертывания крови. Пластинчатый фактор 3 дает начало образованию тромбоцитарной протромбиназы, что приводит к образованию на агрегатах тромбоцитов небольшого количества нитей фибрина, среди которых задерживаются эритроциты и лейкоциты. После образования тромбоцитарного тромба происходит его уплотнение и закрепление в поврежденном сосуде за счет ретракции кровяного сгустка. Ретракция осуществляется под влиянием тромбостенина тромбоцитов за счет сокращения актин-миозинового комплекса тромбоцитов. Тромбоцитарная пробка образуется в целом в течение 1 – 3 минут с момента повреждения, и кровотечение из мелких сосудов останавливается.

Коагуляционный гемостаз - В крупных сосудах тромбоцитарный тромб не выдерживает высокого давления и вымывается, и гемостаз осуществляется путем формирования более прочного фибринового тромба, для образования которого необходим ферментативный коагуляционный механизм. Свертывание крови – это цепной ферментативный процесс, в нем последовательно происходит активация факторов свертывания и образование их комплексов. Сущность свертывания заключается в переходе растворимого белка крови фибриногена в нерастворимый фибрин, в результате образуется прочный фибриновый тромб.

Процесс свертывания крови осуществляется в 3 последовательные фазы.

Первая фаза (самая сложная и продолжительная) - происходит образование активного ферментативного комплекса – протромбиназы, являющейся активатором протромбина. В образовании этого комплекса принимают участие тканевые и кровяные факторы, формируя тканевую и кровяную протромбиназы. Образование тканевой протромбиназы начинается с активации тканевого тромбопластина, образующегося при повреждении стенок сосуда и окружающих тканей. Вместе с VII фактором и ионами кальция он активирует X фактор. В результате взаимодействия активированного X фактора с V фактором и с фосфолипидами тканей или плазмы образуется тканевая протромбиназа. Этот процесс длится 5 – 10 секунд. Образование кровяной протромбиназы начинается с активации XII фактора при его контакте с волокнами коллагена поврежденных сосудов. В активации и действии XII фактора участвуют также высокомолекулярный кининоген (ф XV) и калликреин (ф XIV). Затем XII фактор активирует XI фактор, образуя с ним комплекс. Активный XI фактор совместно с IV фактором активирует IX фактор, который, в свою очередь, активирует VIII фактор, Затем происходит активация X фактора, который образует комплекс с V фактором и ионами кальция, чем и заканчивается образование кровяной протромбиназы. В этом также участвует тромбоцитарный фактор 3. Процесс длится 5-10 минут.

Вторая фаза - под влиянием протромбиназы происходит переход протромбина в активный фермент тромбин. В этом процессе принимают участие факторы IV, V, X.

Третья фаза - растворимый белок крови фибриноген превращается в нерастворимый фибрин, образующий основу тромба. Вначале под влиянием тромбина происходит образование фибрин-мономера. Затем с участием ионов кальция образуется растворимый фибрин-полимер (фибрин “S”, soluble). Под влиянием фибринстабилизирующего фактора XIII образуется нерастворимый фибрин-полимер (фибрин “I”, insoluble), устойчивый к фибринолизу. В фибриновых нитях оседают форменные элементы крови, в частности эритроциты, и формируется кровяной сгусток, или тромб закупоривающий рану. Затем начинается процесс ретракции (уплотнения и закрепления тромба в поврежденном сосуде) - с помощью сократительного белка тромбоцитов тромбостенина и ионов кальция. Через 2 – 3 часа сгусток сжимается до 25 – 50% от первоначального объема и идет отжатие сыворотки, т.е. плазмы, лишенной фибриногена. За счет ретракции тромб становится более плотным и стягивает края раны.

Фибринолиз – это процесс расщепления фибринового сгустка, в результате которого происходит восстановление просвета сосуда. Фибринолиз начинается одновременно с ретракцией сгустка, но идет медленнее. Это тоже ферментативный процесс, который осуществляется под влиянием плазмина (фибринолизина). Плазмин находится в плазме крови в неактивном состоянии в виде плазминогена. Под влиянием кровяных и тканевых активаторов плазминогена происходит его активация. Высокоактивным тканевым активатором является урокиназа. Кровяные активаторы находятся в крови в неактивном состоянии и активируются адреналином, лизокиназами. Плазмин расщепляет фибрин на отдельные полипептидные цепи, в результате чего происходит лизис (растворение) фибринового сгустка. Если нет условий для фибринолиза, то возможна организация тромба, т.е. замещение его соединительной тканью. Иногда тромб может оторваться от места своего образования и вызвать закупорку сосуда в другом месте (эмболия). У здоровых людей активация фибринолиза всегда происходит вторично в ответ на усиление гемокоагуляции. Под влиянием ингибиторов фибринолиз может тормозиться.

Группы крови

Учение о группах крови возникло в связи с проблемой переливания крови. В 1901 г. К. Ландштейнер обнаружил в зритроцитах людей агглютиногены А и В. В плазме крови находятся агглютинины a и b (гамма-глобулины). Согласно классификации К. Ландштейнера и Я. Янского в зависимости от наличия или отсутствия в крови конкретного человека агглютиногенов и агглютининов различают 4 группы крови. Эта система получила название АВО, Группы крови в ней обозначаются цифрами и теми агглютиногенами, которые содержатся в эритроцитах данной группы. Групповые антигены – это наследственные врожденные свойства крови, не меняющиеся в течение всей Жизни человека. Агглютининов в плазме крови новорожденных нет. Они образуются в течение первого года жизни ребенка.

I группа (О) – в эритроцитах агглютиногенов нет, в плазме содержатся агглютинины a и b;

II группа (А) – в эритроцитах содержится агглютиноген А, в плазме – агглютинин b;

III группа (В) – в эритроцитах находится агглютиноген В, в плазме – агглютинин a;

IV группа (АВ) – в эритроцитах обнаруживаются агглютиногены А и В, в плазме агглютининов нет.

У жителей Центральной Европы I группа крови встречается в 33,5%, II группа – 37,5%, III группа – 21%, IV группа – 8%. У 90% коренных жителей Америки встречается I группа крови. Более 20% населения Центральной Азии имеют III группу крови.

Агглютинация происходит в том случае, если в крови человека встречаются агглютиноген с одноименным агглютинином: агглютиноген А с агглютинином а или агглютиноген В с агглютинином b. При переливании несовместимой крови в результате агглютинации и последующего их гемолиза развивается гемотрансфузионный шок, который может привести к смерти, Поэтому было разработано правило переливания небольших количеств крови (200 мл), по которому учитывали наличие агглютиногенов в эритроцитах донора и агглютининов в плазме реципиента. Плазму донора во внимание не принимали, так как она сильно разбавлялась плазмой реципиента. Согласно данному правилу кровь I группы можно переливать людям со всеми группами крови (I, II, III, IV), поэтому людей с первой группой крови называют универсальными донорами. Кровь II группы можно переливать людям со II и IV группами крови, кровь III группы – с III и IV. Кровь IV группы можно переливать только людям с этой же группой крови. В то же время людям с IV группой крови можно переливать любую кровь, поэтому их называют универсальными реципиентами. При необходимости переливания больших количеств крови этим правилом пользоваться нельзя. В дальнейшем было установлено, что агглютиногены А и В существуют в разных вариантах, отличающихся по антигенной активности: А1,А2,А3 и т.д., В1, В2 и т.д. Активность убывает в порядке их нумерации. Наличие в крови людей агглютиногенов с низкой активностью может привести к ошибкам при определении группы крови, а значит, и переливанию несовместимой крови. Также было обнаружено, что у людей с I группой крови на мембране эритроцитов имеется антиген Н. Этот антиген встречается и у людей с II, III и IV группами крови, однако у них он проявляется в качестве скрытой детерминанты. У людей с II и IV группами крови часто встречаются анти-Н-антитела. Поэтому при переливании крови I группы людям с другими группами крови также могут развиться гемотрансфузионные осложнения. В связи с этим в настоящее время пользуются правилом, по которому переливается только одногруппная кровь. Одну каплю крови смешивают с сывороткой анти-В, вторую – с анти-А, третью – с анти-А-анти-В. По реакциям агглютинации (скопления эритроцитов, показанные ярко-красным цветом) судят о групповой принадлежности крови.

Система резус

К. Ландштейнером и А. Винером в 1940 г. в эритроцитах обезьяны макаки-резуса был обнаружен антиген, который они назвали резус-фактором. Этот антиген находится и в крови 85% людей белой расы. У некоторых народов, например, эвенов резус-фактор встречается в 100%. Кровь, содержащая резус-фактор, называется резус-положительной (Rh+). Кровь, в которой резус-фактор отсутствует, называется резус-отрицательной (Rh-). Резус-фактор передается по наследству. В настоящее время известно, что система резус включает много антигенов. Наиболее активными в антигенном отношении являются антиген D, затем следуют С, Е, d, с, е. Они и чаще встречаются. У аборигенов Австралии в эритроцитах не выявлен ни один антиген системы резус. Система резус, в отличие от системы АБО, не имеет в норме соответствующих агглютининов в плазме. Однако если кровь резус-положительного донора перелить резус-отрицательному реципиенту, то в организме последнего образуются специфические антитела по отношению к резус-фактору – антирезус-агглютинины. При повторном переливании резус-положительной крови этому же человеку у него произойдет агглютинация эритроцитов, т.е. возникает резус-конфликт, протекающий по типу гемотрасфузионного шока. Поэтому резус-отрицательным реципиентам можно переливать только резус-отрицательую кровь. Резус-конфликт также может возникнуть при беременности, если кровь матери резус- отрицательная, а кровь плода резус-положительная. Резус-агглютиногены, проникая в организм матери, могут вызвать выработку у нее антител. Однако значительное поступление эритроцитов плода в организм матери наблюдается только в период родовой деятельности. Поэтому первая беременность может закончиться благополучно. При последующих беременностях резус-положительным плодом антитела проникают через плацентарный барьер, повреждают ткани и эритроциты плода, вызывая выкидыш или тяжелую гемолитическую анемию у новорожденных. С целью иммунопрофилактики женщине сразу после родов или аборта вводят концентрированные анти-D-антитела.

Кроме агглютиногенов системы АВО и резус-фактора в последние годы на мембране эритроцитов обнаружены и другие агглютиногены, которые определяют группы крови в данной системе. Таких антигенов более 400. Наиболее важными антигенными системами считаются MNSs, Р, Лютеран (Lи), Льюис (Lе), Даффи (Fу) и др. Наибольшее значение для клиники переливания крови имеют система АВО и резус-фактор. Лейкоциты также имеют более 90 антигенов. Лейкоциты содержат антигены главного локуса НЛА – антигены гистосовместимости, которые играют важную роль в трансплантационном иммунитете.



Свертывание крови, ее дефибринизация и стабилизация

Выпущенная из тела животного кровь обладает способностью быстро свертываться и образовывать желеобразный сгусток, закупоривающий раневое отверстие и останавливающий кровотечение.

Сущность процесса свертывания крови заключается в выпадении, под влиянием особых ферментов, из коллоидного раствора белка плазмы фибриногена, образующего при этом волокнообразную массу тончайших нитей фибрина. Эти нити захватывают в свои петли форменные тела крови, что и приводит к образованию кровяного сгустка (рис.).

Рис. Свертывание плазмы крови (видно выпадение нитей фибрина)

Процесс свертывания крови протекает несколькими этапами. При выходе крови начинают распадаться тромбоциты, освобождая фермент тромбокиназу. Тромбокиназа активирует постоянно растворенный в крови, но находящийся в неактивной форме фермент тромбоген, превращая его в тромбин. Последний при содействии солей кальция крови расщепляет фибриноген плазмы на выпадающий из раствора волокнистый фибрин и остающееся растворенным в плазме фибринопластическое вещество.

Быстрота свертывания крови разных видов животных различна. Так, кровь крупного рогатого скота при комнатной температуре свертывается через 6,5 минуты, овцы через 2,5 минуты, свиньи через 3,5 минуты и лошади через 11,5 минуты. Повышение температуры среды ускоряет процесс свертывания.

Сгусток крови, образующийся при ее свертывании, постепенно сжимается, выделяя прозрачную светложелтую сыворотку крови, которая отличается от плазмы живой крови тем, что в ней нет фибриногена.

Промывая сгусток крови водой, можно удалить форменные элементы крови и растворимые части плазмы и получить чистый фибрин, имеющий вид белой или желтоватой волокнистой массы.

Свежую кровь сбиванием или перемешиванием можно дефибринировать, так как волокна осаждающегося фибрина будут оседать на мешалке, следовательно, легко могут быть отделены от общей массы крови. Дефибринированная кровь уже не способна свертываться и образовывать сгустки. Свертывание крови можно предупредить также ее стабилизацией путем добавления поваренной соли. Стабилизация крови поваренной солью вызывает ее гемолиз (растворение гемоглобина в плазме крови), почему при сепарировании такой крови получается не желтый, а алый серум.

Стабилизацию крови обычно производят так. В сосуд, куда предполагается собрать кровь, предварительно наливают крепкий раствор соли (320 куб. см соли на 1 л воды) из расчета 100-120 куб. см раствора на 1 л крови. После этого в сосуд пускают кровь и перемешивают ее с рассолом в течение 30-40 секунд. Стабилизация крови может быть достигнута также примесью раствора лимоннокислого натрия.

Похожие статьи


Смотрите также