Состав плазмы крови человека
Плазма крови: составные элементы (вещества, белки), функции в организме, использование
Содержание:
Плазма крови – первая (жидкая) составляющая ценнейшей биологической среды под названием кровь. Плазма крови забирает на себя до 60% всего объема крови. Вторую часть (40 – 45 %) циркулирующей по кровеносному руслу жидкости берут на себя форменные элементы: эритроциты, лейкоциты, тромбоциты.
Состав плазмы крови – уникальный. Чего там только нет? Различные белки, витамины, гормоны, ферменты – в общем, все, что каждую секунду обеспечивает жизнь человеческого организма.
Состав плазмы крови
Желтоватая прозрачная жидкость, выделенная при образовании свертка в пробирке – и есть плазма? Нет – это сыворотка крови, в которой нет коагулируемого белка фибриногена (фактора I), он ушел в сгусток. Однако, если взять кровь в пробирку с антикоагулянтом, то он не позволит ей (крови) свернуться, а тяжелые форменные элементы через некоторое время опустятся на дно, сверху же останется также желтоватая, но несколько мутноватая, в отличие от сыворотки, жидкость, вот она и есть плазма крови, мутность которой придают содержащиеся в ней белки, в частности, фибриноген (FI).
Состав плазмы крови поражает своим многообразием. В ней, кроме воды, которая составляет 90 – 93 %, присутствуют компоненты белковой и небелковой природы (до 10%):
плазма в общем составе крови
- Белки, которые забирают на себя 7 – 8 % от всего объема жидкой части крови (в 1 литре плазмы содержится от 65 до 85 граммов белков, норма общего белка в крови в биохимическом анализе: 65 – 85 г/л). Основными плазменными белками признаны альбумины (до 50% от всех белков или 40 – 50 г/л), глобулины (≈ 2,7%) и фибриноген;
- Другие вещества белковой природы (компоненты комплемента, липопротеиды, углеводно-белковые комплексы и пр.);
- Биологически активные вещества (ферменты, гемопоэтические факторы — гемоцитокины, гормоны, витамины);
- Низкомолекулярные пептиды – цитокины, которые, в принципе, белки, но с низкой молекулярной массой, они продуцируются преимущественно лимфоцитами, хотя другие клетки крови также к этому причастны. Не глядя на свой «малый рост», цитокины наделены важнейшими функциями, они осуществляют взаимодействие системы иммунитета с другими системами при запуске иммунного ответа;
- Углеводы, липиды, которые участвуют в обменных процессах, постоянно протекающих в живом организме;
- Продукты, полученные в результате этих обменных процессов, которые впоследствии будут удалены почками (билирубин, мочевина, креатинин, мочевая кислота и др.);
- В плазме крови собрано подавляющее большинство элементов таблицы Д. И. Менделеева. Правда, одни представители неорганической природы (натрий, хлор, калий, магний, фосфор, йод, кальций, сера и др.) в виде циркулирующих катионов и анионов легко поддаются подсчету, другие (ванадий, кобальт, германий, титан, мышьяк и пр.) – по причине мизерного количества, рассчитываются с трудом. Между тем, на долю всех присутствующих в плазме химических элементов приходится от 0,85 до 0,9%.
Таким образом, плазма — это очень сложная коллоидная система, в которой «плавает» все, что содержится в организме человека и млекопитающих и все, что готовится к удалению из него.
Вода – источник Н2О для всех клеток и тканей, присутствуя в плазме в столь значительных количествах, она обеспечивает нормальный уровень артериального давления (АД), поддерживает в более-менее постоянном режиме объем циркулирующей крови (ОЦК).
Различаясь аминокислотными остатками, физико-химическими свойствами и другими характеристиками, белки создают основу организма, обеспечивая ему жизнь. Разделив плазменные белки на фракции, можно узнать содержание отдельных протеинов, в частности, альбуминов и глобулинов, в плазме крови. Так делают с диагностической целью в лабораториях, так делают в промышленных масштабах для получения очень ценных лечебных препаратов.
Среди минеральных соединений наибольшая доля в составе плазмы крови принадлежит натрию и хлору (Na и Cl). Эти два элемента занимают ≈ по 0,3% минерального состава плазмы, то есть, они как бы являются основными, что нередко используется для восполнения объема циркулирующей крови (ОЦК) при кровопотерях. В подобных случаях готовится и переливается доступное и дешевое лекарственное средство — изотонический раствор хлорида натрия. При этом 0,9% р-р NaCl называют физиологическим, что не совсем верно: физиологический раствор должен, кроме натрия и хлора, содержать и другие макро- и микроэлементы (соответствовать минеральному составу плазмы).
Видео: что такое плазма крови
Функции плазмы крови обеспечивают белки
Функции плазмы крови определяются ее составом, преимущественно, белковым. Более детально этот вопрос будет рассмотрен в разделах ниже, посвященных основным белкам плазмы , однако кратко отметить важнейшие задачи, которые решает этот биологический материал, не помешает. Итак, главные функции плазмы крови:
- Транспортная (альбумин, глобулины);
- Дезинтоксикационная (альбумин);
- Защитная (глобулины — иммуноглобулины);
- Коагуляционная (фибриноген, глобулины: альфа-1-глобулин — протромбин);
- Регуляторная и координационная (альбумин, глобулины);
Это коротко о функциональном назначении жидкости, которая в составе крови постоянно движется по кровеносным сосудам, обеспечивая нормальную жизнедеятельность организма. Но все же некоторым ее компонентам следовало бы уделить больше внимания, к примеру, что читатель узнал о белках плазмы крови, получив столь мало сведений? А ведь именно они, главным, образом, решают перечисленные задачи (функции плазмы крови).
белки плазмы крови
Безусловно, дать полнейший объем информации, затрагивая все особенности белков, присутствующих в плазме, в небольшой статье, посвященной жидкой части крови, наверное, сделать трудновато. Между тем, вполне возможно познакомить читателя с характеристиками основных протеинов (альбумины, глобулины, фибриноген – их считают главными белками плазмы) и упомянуть о свойствах некоторых других веществ белковой природы. Тем более что (как указывалось выше) они обеспечивают качественное выполнение своих функциональных обязанностей этой ценной жидкостью.
Несколько ниже будут рассмотрены основные белки плазмы, однако вниманию читателя хотелось бы представить таблицу, которая показывает, какими протеинами представлены основные белки крови, а также их главное предназначение.
Таблица 1. Основные белки плазмы крови
Альбумины | 35 - 55 | «Строительный материал», катализатор иммунологических реакций, функции: транспорт, обезвреживание, регуляция, защита. |
Альфа Глобулин α-1 | 1,4 – 3,0 | α1-антитрипсин, α-кислый протеин, протромбин, транскортин, переносящий кортизол, тироксинсвязывающий белок, α1-липопротеин, транспортирующий жиры к органам. |
Альфа Глобулин α-2 | 5,6 – 9,1 | α-2-макроглобулин (главный в группе протеин) - участник иммунного ответа, гаптоглобин - образует комплекс со свободным гемоглобином, церулоплазмин – переносит медь, аполипопротеин В – транспортирует липопротеиды низкой плотности («плохой» холестерин»). |
Бета Глобулины: β1+β2 | 5,4 – 9,1 | Гемопексин (связывает гем гемоглобина, чем предотвращает удаление железа из организма), β-трансферрин (переносит Fe), компонент комплемента (участвует в иммунологических процессах), β-липопротеиды – «транспортное средство» для холестеринов и фосфолипидов. |
Гамма глобулин γ | 8,1 – 17,0 | Естественные и приобретенные антитела (иммуноглобулины 5 классов – IgG, IgA, IgM, IgE, IgD), осуществляющие, главным образом, иммунную защиту на уровне гуморального иммунитета и создающие аллергостатус организма. |
Фибриноген | 2,0 – 4,0 | Первый фактор свертывающей системы крови – FI. |
Альбумины
Альбумины — это простые белки, которые по сравнению с другими протеинами:
структура альбумина
- Проявляют самую высокую устойчивость в растворах, но при этом хорошо растворяются в воде;
- Неплохо переносят минусовые температуры, не особо повреждаясь при повторном замораживании;
- Не разрушаются при высушивании;
- Пребывая в течение 10 часов при довольно высокой для других белков температуре (60ᵒС), не теряют своих свойств.
Способности этих важных белков обусловлены наличием в молекуле альбумина очень большого количества полярных распадающихся боковых цепей, что определяет главные функциональные обязанности белков — участие в обмене и осуществление антитоксического эффекта. Функции альбуминов в плазме крови можно представить следующим образом:
- Участие в водном обмене (за счет альбуминов поддерживается необходимый объем жидкости, поскольку они обеспечивают до 80% суммарного коллоидно-осмотического давления крови);
- Участие в транспортировке различных продуктов и, особенно, тех, которые с большим трудом поддаются растворению в воде, например, жиров и желчного пигмента – билирубина (билирубин, связавшись с молекулами альбумина, становится безвредным для организма и в таком состоянии переносится в печень);
- Взаимодействие с макро- и микроэлементами, поступающими в плазму (кальций, магний, цинк и др.), а также со многими лекарственными препаратами;
- Связывание токсических продуктов в тканях, куда данные белки беспрепятственно проникают;
- Перенос углеводов;
- Связывание и перенос свободных жирных кислот — ЖК (до 80%), направляющихся в печень и другие органы из жировых депо и, наоборот, при этом, ЖК не проявляют агрессии в отношении красных клеток крови (эритроцитов) и гемолиза не происходит;
- Защита от жирового гепатоза клеток печеночной паренхимы и перерождения (жирового) других паренхиматозных органов, а, кроме этого, препятствие на пути образования атеросклеротических бляшек;
- Регуляция «поведения» некоторых веществ в организме человека (поскольку активность ферментов, гормонов, антибактериальных препаратов в связанном виде падает, данные белки помогают направить их действие в нужное русло);
- Обеспечение оптимального уровня катионов и анионом в плазме, защита от негативного воздействия случайно попавших в организм солей тяжелых металлов (комплексируются с ними с помощью тиоловых групп), нейтрализация вредных веществ;
- Катализ иммунологических реакций (антиген→антитело);
- Поддержание постоянства рН крови (четвертый компонент буферной системы – плазменные белки);
- Помощь в «строительстве» тканевых протеинов (альбумины совместно с другими белками составляют резерв «стройматериалов» для столь важного дела).
Синтезируется альбумин в печени. Средний период полужизни данного белка составляет 2 – 2,5 недели, хотя одни «проживают» неделю, а другие – «работают» до 3 – 3,5 недель. Путем фракционирования белков из плазмы доноров получают ценнейший лечебный препарат (5%, 10% и 20% раствор), имеющий аналогичное название. Альбумин является последней фракцией в процессе, поэтому его производство требует немалых трудовых и материальных затрат, отсюда и стоимость лечебного средства.
Показаниями к использованию донорского альбумина являются различные (в большинстве случаев довольно тяжелые) состояния: большая, создающая угрозу жизни, потеря крови, падение уровня альбумина и снижение коллоидно-осмотического давления по причине различных заболеваний.
Глобулины
Эти белки забирают меньшую долю по сравнению с альбумином, однако довольно ощутимую среди других протеинов. В лабораторных условиях глобулины разделяют на пять фракций: α-1, α-2, β-1, β-2 и γ-глобулины. В условиях производства для получения препаратов из фракции II + III выделяют гамма-глобулины, которые впоследствии будут использованы для лечения различных болезней, сопровождающихся нарушением в системе иммунитета.
разнообразие форм видов белков плазмы
В отличие от альбуминов, вода для растворения глобулинов не подходит, поскольку в ней они не растворяются, зато нейтральные соли и слабые основания вполне подойдут для приготовления раствора данного белка.
Глобулины — весьма значимые плазменные протеины, в большинстве случаев – это белки острой фазы. Не глядя на то, что их содержание находится в пределах 3% от всех плазменных белков, они решают важнейшие для организма человека задачи:
- Альфа-глобулины участвуют во всех воспалительных реакциях (в биохимическом анализе крови отмечается повышение α-фракции);
- Альфа- и бета-глобулины, находясь в составе липопротеинов, осуществляют транспортные функции (жиры в свободном состоянии в плазме появляются очень редко, разве что после нездоровой жирной трапезы, а в нормальных условиях холестерин и другие липиды связаны с глобулинами и образуют растворимую в воде форму, которая легко транспортируется из одного органа в другой);
- α- и β-глобулины участвуют в холестериновом обмене (см. выше), что определяет их роль в развитии атеросклероза, поэтому неудивительно, что при патологии, протекающей с накоплением липидов, в сторону увеличения изменяются значения бета-фракции;
- Глобулины (фракция альфа-1) переносят витамин В12 и отдельные гормоны;
- Альфа-2-глобулин находится в составе принимающего очень активное участие в окислительно-восстановительных процессах гаптоглобина – этот острофазный белок связывает свободный гемоглобин и, таким образом, препятствует выведению железа из организма;
- Часть бета-глобулинов совместно с гамма-глобулинами решает задачи иммунной защиты организма, то есть, является иммуноглобулинами;
- Представители альфа, бета-1 и бета-2-фракций переносят стероидные гормоны, витамин А (каротин), железо (трансферрин), медь (церулоплазмин).
Очевидно, что внутри своей группы глобулины несколько отличаются друг от друга (прежде всего, своим функциональным назначением).
Следует заметить, что с возрастом или при отдельных заболеваниях печень может начать производить не совсем нормальные глобулины альфа и бета, при этом, измененная пространственная структура макромолекулы белков не лучшим образом отразится на функциональных способностях глобулинов.
Гамма-глобулины
Гамма-глобулины – белки плазмы крови, обладающие наименьшей электрофоретической подвижностью, эти протеины составляют основную массу естественных и приобретенных (иммунных) антител (АТ). Гамма-глобулины, образованные в организме после встречи с чужеродным антигеном, называют иммуноглобулинами (Ig). В настоящее время с приходом в лабораторную службу цитохимических методов стало возможным исследование сыворотки с целью определения в ней иммунных белков и их концентраций. Не все иммуноглобулины, а их известно 5 классов, имеют одинаковую клиническую значимость, кроме того, их содержание в плазме зависит от возраста и меняется при различных ситуациях (воспалительные заболевания, аллергические реакции).
Таблица 2. Классы иммуноглобулинов и их характеристика
G | Ок. 75 | Антитоксины, антитела, направленные против вирусов и грамположительных микробов; |
A | Ок. 13 | Антиинсулярные АТ при сахарном диабете, антитела, направленные против капсульных микроорганизмов; |
M | Ок. 12 | Направление – вирусы, грамотрицательные бактерии, форсмановские и вассермановские антитела. |
E | 0,0… | Реагины, специфические АТ против различных (определенных) аллергенов. |
D | У эмбриона, у детей и взрослых, возможно, обнаружение следов | Не учитываются, поскольку клинической значимости не имеют. |
Концентрация иммуноглобулинов разных групп имеет заметные колебания у детей младшей и средней возрастной категории (преимущественно за счет иммуноглобулинов класса G, где отмечаются довольно высокие показатели — до 16 г/л). Однако приблизительно после 10-летнего возраста, когда прививки сделаны и основные детские инфекции перенесены, содержание Ig (в том числе, IgG) снижается и устанавливается на уровне взрослых:
IgM – 0,55 – 3,5 г/л;
IgA – 0,7 – 3,15 г/л;
IgG – 0,7 – 3,5 г/л;
Фибриноген
Первый фактор свертывания (FI — фибриноген), который при образовании сгустка переходит в фибрин, формирующий сверток (наличие в плазме фибриногена отличает ее от сыворотки), по сути, относится к глобулинам.
Фибриноген с легкостью осаждается 5% этанолом, что используется при фракционировании белков, а также полунасыщенным раствором хлорида натрия, обработкой плазмы эфиром и повторным замораживанием. Фибриноген термолабилен и полностью сворачивается при температуре 56 градусов.
Без фибриногена не образуется фибрин, без него не останавливается кровотечение. Переход данного белка и образование фибрина осуществляется с участием тромбина (фибриноген → промежуточный продукт – фибриноген В → агрегация тромбоцитов → фибрин). Начальные стадии полимеризации фактора свертывания можно повернуть вспять, однако под влиянием фибринстабилизирующего фермента (фибриназа) происходит стабилизация и течение обратной реакции исключается.
Участие в реакции свертывания крови – главное функциональное назначение фибриногена, но он имеет и другие полезные свойства, например, по ходу выполнения своих обязанностей, укрепляет сосудистую стенку, производит небольшой «ремонт», прилипая к эндотелию и закрывая тем самым маленькие дефекты, которые то и дело возникают в процессе жизни человека.
Белки плазмы в качестве лабораторных показателей
В лабораторных условиях для определения концентрации плазменных белков можно работать с плазмой (кровь берут в пробирку с антикоагулянтом) или проводить исследование сыворотки, отобранной в сухую посуду. Белки сыворотки крови ничем не отличаются от плазменных протеинов, за исключением фибриногена, который, как известно, в сыворотке крови отсутствует и который без антикоагулянта уходит на образование сгустка. Основные протеины меняют свои цифровые значения в крови при различных патологических процессах.
Повышение концентрации альбумина в сыворотке (плазме) – редчайшее явление, которое случается при обезвоживании либо при чрезмерном поступлении (внутривенное введение) альбумина высоких концентраций. Снижение уровня альбумина может указывать на истощение функциональных возможностей печени, на проблемы с почками либо на нарушения в желудочно-кишечном тракте.
Увеличение или снижение белковых фракций характерно ряду патологических процессов, например, острофазные протеины альфа-1- и альфа-2-глобулины, повышая свои значения, могут свидетельствовать об остром воспалительном процессе, локализованном в органах дыхания (бронхи, легкие), затрагивающем выделительную систему (почки) либо сердечную мышцу (инфаркт миокарда).
Особенное место в диагностике различных состояний отводится фракции гамма-глобулинов (иммуноглобулинов). Определение антител помогает распознать не только инфекционное заболевание, но и дифференцировать его стадию. Более подробные сведения об изменении значений различных белков (протеинограмма) читатель может почерпнуть в отдельном материале по глобулинам.
Отклонения от нормы фибриногена проявляют себя нарушениями в системе гемокоагуляции, поэтому данный белок является важнейшим лабораторным показателем свертывающих способностей крови (коагулограмма, гемостазиограмма).
Что касается других важных для организма человека белков, то при исследовании сыворотки, используя определенные методики, можно найти практически любые, которые интересны для диагностики заболеваний. Например, рассчитывая концентрацию трансферрина (бета-глобулин, острофазный белок) в пробе и рассматривая его не только в качестве «транспортного средства» (хотя это, наверное, в первую очередь), врач узнает степень связывания протеином трехвалентного железа, высвобождаемого красными кровяными тельцами, ведь Fe3+, как известно, присутствуя в свободном состоянии в организме, дает выраженный токсический эффект.
Исследование сыворотки с целью определения содержания церулоплазмина (острофазный белок, металлогликопротеин, переносчик меди) помогает диагностировать такую тяжелую патологию, как болезнь Коновалова-Вильсона (гепатоцеребральная дегенерация).
Таким образом, исследуя плазму (сыворотку), можно определить в ней содержание и тех белков, которые жизненно необходимы, и тех, которые появляются в анализе крови, как показатель патологического процесса (например, С-реактивный белок).
Плазма крови – лечебное средство
Заготовка плазмы в качестве лечебного средства началась еще в 30 годах прошлого столетия. Сейчас нативную плазму, полученную путем спонтанного оседания форменных элементов в течение 2 суток, уже давно не используют. На смену устаревшим пришли новые методы разделения крови (центрифугирование, плазмаферез). Кровь после заготовки подвергается центрифугированию и разделяется на компоненты (плазма + форменные элементы). Жидкая часть крови, полученная подобным образом, обычно замораживается (свежезамороженная плазма) и, во избежание заражения гепатитами, в частности, гепатитом С, который имеет довольно длинный инкубационный период, направляется на карантинное хранение. Замораживание данной биологической среды при ультранизких температурах позволяет хранить ее год и более, чтобы потом использовать для приготовления препаратов (криопреципитат, альбумин, гамма-глобулин, фибриноген, тромбин и др.).
В настоящее время жидкая часть крови для переливаний все чаще заготавливается методом плазмафереза, который наиболее безопасен для здоровья доноров. Форменные элементы после центрифугирования возвращаются путем внутривенного введения, а потерянные с плазмой белки в организме сдавшего кровь человека быстро регенерируются, приходят в физиологическую норму, при этом, не нарушая функции самого организма.
Кроме свежезамороженной плазмы, переливаемой при многих патологических состояниях, в качестве лечебного средства используют иммунную плазму, полученную после иммунизации донора определенной вакциной, например, стафилококковым анатоксином. Такую плазму, имеющую высокий титр антистафилококковых антител, используют также для приготовления антистафилококкового гамма-глобулина (иммуноглобулин человека антистафилококковый) – препарат довольно дорогостоящий, поскольку его производство (фракционирование белков) требует немалых трудовых и материальных затрат. И сырьем для него служит – плазма крови иммунизированных доноров.
Своего рода иммунной средой является и плазма антиожоговая. Давно замечено, что кровь людей, переживших подобный ужас вначале несет токсические свойства, однако спустя месяц в ней начинают обнаруживаться ожоговые антитоксины (бета- и гамма-глобулины), которые могут помочь «друзьям по несчастью» в остром периоде ожоговой болезни.
Разумеется, получение подобного лечебного средства сопровождается определенными трудностями, не глядя на то, что в период выздоровления потерянная жидкая часть крови восполняется донорской плазмой, поскольку организм обожженных людей испытывает белковое истощение. Однако донор должен быть взрослым и в другом отношении — здоровым, а его плазма должна иметь определенный титр антител (не менее 1 : 16). Иммунная активность плазмы реконвалесцентов сохраняется около двух лет и через месяц после выздоровления ее можно забирать у доноров-реконвалесцентов уже без компенсации.
Из плазмы донорской крови для людей, страдающих гемофилией или другой патологией свертывания, которая сопровождается снижением антигемофильного фактора (FVIII), фактора фон Виллебранда (ФВ, VWF) и фибриназы (фактор XIII, FXIII), готовится гемостатическое средство, называемое криопреципитатом. Его действующее вещество – фактор свертывания VIII.
Видео: о сборе и использовании плазмы крови
Фракционирование белков плазмы в промышленных масштабах
Между тем, использование цельной плазмы в современных условиях далеко не всегда оправдано. Причем, как с терапевтических, так и с экономических точек зрения. Каждый из плазменных белков несет свои, присущие только ему, физико-химические и биологические свойства. И вливать бездумно столь ценный продукт человеку, которому нужен конкретный белок плазмы, а не вся плазма, нет никакого смысла, к тому же – дорого в материальном плане. То есть, одна и та же доза жидкой части крови, разделенная на составляющие, может принести пользу нескольким пациентам, а не одному больному, нуждающемуся в отдельном препарате.
Промышленный выпуск препаратов был признан в мире после разработок в этом направлении ученых Гарвардского университета (1943 год). В основу фракционирования белков плазмы лег метод Кона, суть которого – осаждение фракций протеинов ступенчатым добавлением этилового спирта (концентрация на первом этапе – 8%, на завершающем – 40%) в условиях низких температур (-3ºС – I стадия, -5ºС – последняя). Безусловно, метод несколько раз модифицировался, однако и теперь (в разных модификациях) его используют для получения препаратов крови на всей планете. Вот его краткая схема:
- На первой стадии осаждается белок фибриноген (осадок I) – данный продукт после специальной обработки пойдет в лечебную сеть под собственным названием или войдет в набор для остановки кровотечений, называемый «Фибриностатом»);
- Вторую стадию процесса представляет супернатант II + III (протромбин, бета- и гамма-глобулины) – эта фракция пойдет на производство препарата, который называется гамма-глобулин человека нормальный, либо будет выпущена, как лечебное средство под названием антистафилококковый гамма-глобулин. В любом случае, из супернатанта, полученного на второй стадии, можно приготовить препарат, содержащий большое количество антимикробных и антивирусных антител;
- Третья, четвертая стадии процесса нужны для того, чтобы добраться до осадка V (альбумин + примесь глобулинов);
- 97 – 100% альбумин выходит лишь на завершающей стадии, после чего с альбумином еще долго придется работать, пока он не поступит в лечебные учреждения (5, 10, 20% альбумин).
Но это – всего лишь краткая схема, подобное производство на самом деле занимает много времени и требует участия многочисленного персонала разной степени квалификации. На всех этапах процесса будущее ценнейшее лекарство находится под постоянным контролем различных лабораторий (клинической, бактериологической, аналитической), ведь все параметры препарата крови на выходе должны строго соответствовать всем характеристикам трансфузионных сред.
Таким образом, плазма, помимо того, что в составе крови она обеспечивает нормальную жизнедеятельность организма, может быть еще важным диагностическим критерием, показывающим состояние здоровья, или же спасать жизнь других людей, используя свои уникальные свойства. И это не все о плазме крови. Мы не стали давать полнейшую характеристику всем ее белкам, макро- и микроэлементам, досконально описывать ее функции, ведь все ответы на оставшиеся вопросы можно найти на страницах СосудИнфо.
Перейти в раздел:
- Заболевания крови, анализы, лимфатическая система
Шаг 1: оплатите консультацию с помощью формы → Шаг 2: после оплаты задайте свой вопрос в форму ниже ↓ Шаг 3: Вы можете дополнительно отблагодарить специалиста еще одним платежом на произвольную сумму ↑
1.Состав крови. Состав плазмы. Сыворотка. Функции крови Клеточный состав крови. Показатели красной крови. Динамика показателей красной крови при сотой и хронической кровопотери.
1. Транспортная функция: доставка на периферию к тканям и клеткам тела кислорода из легких, необх для окисл процессов, питательных веществ из кишечника (глюкозы, аминокислот, жиров, витаминов, солей, а также воды), удаление углекислоты СО2 и других продуктов обмена (шлаков) ч/з экскреторные системы (легкие, кишечник, печень, почки, кожу).
2. Участие в нейрогуморальной регуляции функций организма.
3. Защитная функция целлюлярная (фагоциты крови) и гуморальная (антитела).
4. Участие в физико-химической регуляции организма (темп, осмот давления, кислотно-щелочного равновесия, коллоидно-осмотического давления, химического состава).
Эритроциты: м – 4 -5 х 10¹²/л; ж – 3,7 - 4,7 х 10¹²/л.
ЦПК: 0,8-1,1 – нормохромазия; 0,8 – гипохромазия; 1,1 – гиперхромазия.
Гемоглобин:98% массы белков эритроцита, Hb м – 140-160 г/л, Hb ж – 120-140 г/л.
Тромбоциты 200-400 х109/л. Образуются в костном мозге из мегакариоцитов. Продол 8-12 сут. Разрушаются в печени, легких, селезенке. Образование регулируется- тромбопоэтином
В крови в неактивном состоянии, активируются при контакте с поврежденной поверхностью.
Виды лейкоцитов | Гранулоциты | Агранулоциты | |||||
Нейтрофилы | Базофилы | Эозинофилы | Лимфоциты | Моноциты | |||
Юные | Палочкоядерные | Сегментоядерные | |||||
% | 0-0,5% | 3-5% | 50-70% | 0,5% | 1-5% | 20-35% | 6-8% |
Рез-ты подсчета |
Состав крови. Периферическая кровь состоит из жидкой части—плазмы и взвешенных в ней форменных элементов или кровяных клеток (эритроцитов, лейкоцитов, тромбоцитов). Если дать крови отстояться или провести ее центрифугирование, предварительно смешав с противосвертывающим веществом, то образуются два резко отличающихся друг от друга слоя: верхний—прозрачный, бесцветный или слегка желтоватый—плазма крови; нижний—красного цвета, состоящий из эритроцитов и тромбоцитов. Лейкоциты за счет меньшей относительной плотности располагаются на поверхности нижнего слоя в виде тонкой пленки белого цвета.
Объемные соотношения плазмы и форменных элементов определяют с помощью гематокрита. В периферической крови плазма составляет приблизительно 52—58% объема крови, а форменные элементы 42— 48%.
Плазма крови, ее состав. В состав плазмы крови входят вода (90—92%) и сухой остаток (8—10%). Сухой остаток состоит из органических и неорганических веществ. К органическим веществам плазмы крови относятся: 1) белки плазмы — альбумины (около 4,5%), глобулины (2—3,5%), фибриноген (0,2—0,4%). Общее количество белка в плазме составляет 7—8%; 2) небелковые азотсодержащие соединения (аминокислоты, полипептиды, мочевина, мочевая кислота, креатин, креатинин, аммиак). Общее количество остаточного азота 11-15 ммоль/л (30—40 мг%). 3) безазотистые органические вещества: глюкоза 4,4—6,65 ммоль/л (80—120 мг%), нейтральные жиры, липиды;
4) ферменты и проферменты: некоторые из них участвуют в процессах свертывания крови и фибринолиза, в частности протромбин и профибринолизин. В плазме содержатся также ферменты, расщепляющие гликоген, жиры, белки и др. Неорганические вещества плазмы крови составляют около 1 % от ее состава. К этим веществам относятся преимущественно катионы —Са2+, К+, Мg2+ и анионы Сl, НРO4, НСО3. Объем крови – 5 - 6 л или 6 - 8% от массы тела. Удельная плотность крови–1050 – 1060 г/л, в том числе: плазмы – 1025 – 1034 г/л, эритроцитов – 1090 г/л. Удельная плотность крови зависит от содержания эритроцитов, а в плазме – от концентрации белков. Гематокритное число – количество форменных элементов крови, % от общего объема крови – 40 – 45% (или 0,40 – 0,45). Один из ведущих клинических показателей крови, отражающий соотношение между форменными элементами крови и жидкой ее частью.
Белковый состав крови: Общее количество белка крови 60-80г/л. Различают несколько белковых фракций, выполняющих специфические функции. Альбумины (40-60г/л) обладают высокой коллоидно-осмотической активностью. Глобулины , , (20 - 40 г/л) выполняют транспортную функцию для переноса ионов, гормонов, липидов, создают гуморальный иммунитет, образуя различные антитела, называемые иммуноглобулинами (IgM, IgG). Фибриноген (2-4г/л)главный фактор механизма свертывания крови.
2. Свертывающая система крови. Физиологическая остановка кровотечений. Свертывающая система крови-совокупность органов и тканей, которые синтезируют и утилизируют факторы, обеспечивающие свертываемость крови.
Факторы свертывания крови.
Плазменные
I. Фибриноген
II. Протромбин
III. Тканевой тромбопластин
IV. Са 2+
V. Глобулин-акцелератор
VI. Исключен из списка
VII. Проконвертин
VIII. Антигемофилический глобулин (АГГ- А)
IX. Фактор Кристмаса (АГГ-В)
X. Фактор Стюарта-Прауэра
XI. Предшественник плазменного тромбопластина (АГГ-С)
XII. Фактор Хагемана или фактор контакта
XIII. Фибрин-стабилизирующий фактор (фибриназа)
Пластинчатые (факторы тромбоцитов – всего 14)
1ф – АС- глобулин тромбоцитов
2ф – Тромбин-акцелератор
3ф – Тромбопластин тромбоцитов (фосфолипид)
4ф – Антигепариновый фактор
5ф – Тромбоцитарный фибриноген
6ф – Ретрактозим
7ф – Антифибринолизин
8ф – Серотонин
Тканевые
Фазы сосудисто-тромбоцитарного гемостаза
Рефлекторный спазм поврежденных сосудов
Адгезия тромбоцитов (факторы - коллаген, тромбоксан, NO)
Агрегация (скучивание) тромбоцитов (тромбин, адреналин, АДФ)
- Обратимая
- Необратимая
На стадии агрегации разрушаются тромбоциты, выходит протромбин (со слов Комковой)
Выход БАВ
ФАЗЫ СВЕРТЫВАНИЯ: Образование протромбиназы. Внешняя 4-5мин, внутренняя 3-5 сек
Образование тромбина (3-5сек)
Образование фибрина (3-5 секунд)
Стабилизация фибрина и ретракция сгустка (минуты)
Фибринолиз (часы)
3. Противосвертывающая система. Блокаторы фибринолиза. ДВС-синдром. Клиника, диагностика, лечение. Цель: - поддержание крови в жидком состоянии; ограничение тромбообразования.
Поддержание крови в жидком состоянии обеспечивается благодаря движению крови адсорбции эндотелием коагуляционных факторов действию физиологических антикоагулянтов. Физиологические антикоагулянты в соответствии с механизмом действия делятся на три основные группы:
1) антитромбопластины — вещества, обладающие антитромбопластическим и антипротромбиназным действием;
2) антитромбины — вещества, связывающие тромбин;
3) антифибрины - ингибиторы самосборки фибрина.
Различают физиологические антикоагулянты:
1.Первичные антикоагулянты (антитромбин III, гепарин, a2-макроглобулин, a1-антитрипсин, протеин С, протеин S, тромбомодулин, ингибитор внешнего пути свертывания (TFPI)):
- постоянно содержатся в крови
- синтез в организме не зависит от активности системы
- выделяются в кровоток с постоянной скоростью
- взаимодействуют с активными факторами свертывания, вызывая их нейтрализацию.
2. Вторичные антикоагулянты (антитромбин I (фибрин), антитромбин IX, антитромбопластины, ауто-II-антикоагулянт, фибринопептиды, метафактор Vа, продукты деградации фибрина (ПДФ))
- образуются в процессе гемокоагуляции и фибринолиза
- являются результатом дальнейшей ферментативной деградации некоторых коагуляционных факторов.
Блокаторы фибринолиза: α2-антиплазмин-который вызывает связывание плазмина,трипсина, калликреина,урокиназы,тканевой активатор плазминогена;α1-протеазный ингибитор; альфа2-макроглобулин; C1-протеазный ингибитор; ингибиторы активатора плазминогена, вырабатываемые в эндотелии,фибробластами,макрофагамиимоноцитами.
ДВС-синдром (диссеминированное внутрисосудистое свёртывание)—нарушенная свёртываемость крови по причине массивного освобождения из тканей тромбопластических веществ (сочетание массивного тромбообразования со сниженной свертываемостью крови).
Причины: -тяжелые травмы; -осложнения беременности и родов; - шок; - бактериальный сепсис; - трансплантация
В клинической картине ДВС-синдрома отмечаются:
в 1-й стадии—симптомы основного заболевания, преобладание генерализованного тромбоза, гиповолемия, нарушение метаболизма.
во 2-й стадии-признаки блокады системы микроциркуляции паренхиматозных органов, геморрагический синдром (петехиально-пурпурный тип кровоточивости).
в 3-й стадии - признаки полиорганной недостаточности(острая дыхательная, сердечно-сосудистая, печеночная, почечная,парезкишечника) и метаболические нарушения (гипокалиемия, гипопротеинемия, метаболический синдром (петехии, гематомы, кровоточивость из слизистых оболочек, массивные желудочно-кишечные, легочные, внутричерепные и другие кровотечения, кровоизлияния в жизненно важные органы).
в 4-й стадии (при благоприятном исходе) показатели гемостаза постепенно нормализуются.
Диагностика: увеличение времени свертываемости (до 60мин); сгусток не образуется; тромбоцитопения.
Лечение:
- Немедленное переливание минимум 1 литра свежезамороженной плазмы в течение 40 - 60 мин
- Гепарин— внутривенно в начальной дозе 1000 ЕД/час (суточная доза гепарина будет уточнена после анализа коагулограммы)
- Купирование шока: инфузии кровезаменителей, глюкокортикоидов, наркотические анальгетики, допамин
- Антиагрегатная терапия: курантил, трентал
- Активация фибринолиза: никотиновая кислота
4. Классификация кровотеченийпо причине возникновения и виду кровоточащего сосуда, по отношению к внешней среде, клиническим проявлениям и времени возникновения. Факторы, определяющие объем и тяжесть клинических проявлений кровопотери.
В зависимости от причины возникновения:
-мех.повреждения, разрыв сосуда (открытые, закрытые травмы) -аррозионные (прорастание опухоли, деструктивное воспаление) -диапедезные (повышена проницаемость мелких сосудов) -нарушение хим.состава, изм-е свертывающей и противосвертывающей систем.
С учетом вида кровоточащего сосуда:
-артериальные (алая кровь пульсирующей струей) -венозные (темная кровь, истечение постоянное) -артериовенозные -капиллярные (артериальная и венозная кровь, кровоточит вся раневая поверхность) -паренхиматозные (в паренхиматозных органах, капиллярные, трудно останавливаются).
По отношению к внешней среде и по клин.проявлениям:
-наружные (кровь изливается во внешнюю среду) -внутренние (в полости и ткани, серозные полости) -скрытые (без клин.признаков)
По времени возникновения
-первичные (сразу после повреждения) -вторичные (после остановки первичного), ранние и поздние.
Факторы, определяющие объем кровопотери и исход. Объем и скорость (быстро, 1/3 ОЦК – опасна для жизни, половина ОЦК – смертельна). Наиболее быстро - из крупных артерий. При поперечном разрыве внутренняя оболочка вворачивается внутрь, активное тромбообразование, возможна самостоятельная остановка кр-я. На объем влияет состояние сверт. и п/сверт. систем. Общее состояние организма. Неблагоприятно: травматический шок, исходная анемия, истощающие заболевания, длительные операции, сердечная недост-ть, нарушение свертывания. Скорость адаптапции к кровопотере. Легче адаптируются женщины и доноры. Условия внешней среды. Плохо: перегревание и переохлаждение. Возраст и пол. Тяжелее: дети и престарелые.
Что такое плазма крови
Рейтинг: 22 487Кровь образована соединением группы веществ — плазмы и форменных элементов. Каждая часть имеет ярко выраженные функции и исполняет свои уникальные задачи. Определенные ферменты крови делают ее красной, однако в процентном соотношении большую часть состава (50-60%) занимает жидкость светло-желтого цвета. Такое соотношение плазмы называется гематокринное. Плазма придает крови состояние жидкости, хотя по плотности тяжелее воды. Плотной плазму делают содержащиеся в ней вещества: жиры, углеводы, антитела в крови, соли и прочие составляющие. Плазма крови человека может приобрести мутный оттенок после приема жирной пищи. И так, что такое плазма крови и какие ее функции в организме, обо всем этом узнаем далее.
Компоненты и состав
Более 90% в составе плазмы крови занимает вода, остальные её составляющие — сухие вещества: белки, глюкоза, аминокислоты, жир, гормоны, растворенные минералы.
Порядка 8% состава плазмы приходится на белки. Белки в крови в свою очередь состоят из фракции альбуминов (5%), фракции глобулинов(4%), фибриногенов (0,4%). Таким образом, в 1 литре плазмы содержится 900 гр воды, 70 гр белка и 20 гр молекулярных соединений.
Плазма крови в пробиркеНаиболее распространен белок — альбумин в крови. Он образуется в печение и занимает 50% протеиновой группы. Основными функциями альбумина являются транспортная (перенос микроэлементов и препаратов), участие в обмене веществ, синтез белков, резервирование аминокислот. Наличие альбумина в крови отражает состояние печени — пониженный показатель альбумина свидетельствует о присутствии заболевания. Низкое же содержание альбумина у детей, например, увеличивает шанс на заболевание желтухой.
Глобулины— крупномолекулярные составляющие белка. Они вырабатываются печенью и органами иммунной системы. Глобулины могут быть трех видов: бета-, гамма-, альфа-глобулины. Все они обеспечивают транспортные и связующие функции. Гамма-глобулины еще именуют антителами, они отвечают за реакцию иммунной системы. При снижении иммуноглобулинов в организме наблюдается значительное ухудшение в работе иммунитета: возникают постоянные бактериальные и вирусные инфекции.
Белок фибриноген формируется в печени и, становясь фибрином, он образует сгусток в местах поражения сосудов. Таким образом жидкая составляющая крови участвует в процессе ее свертываемости.
Среди небелковых соединений присутствуют:
- Органические азотосодержащие соединения (азот мочевины, билирубин, мочевая кислота, креатин и пр.). Повышение азота в организме называется азотомия. Она возникает при нарушении выведения продуктов обмена с мочой или же при избыточном поступлении азотистых веществ в силу активного распада белков (голодание, сахарный диабет, ожоги, инфекции).
- Органические безазотистые соединения (липиды, глюкоза, холестерин в крови, молочная кислота). Для поддержания здоровья необходимо отслеживать ряд этих жизненно-важных показателей.
- Неорганические элементы (кальций, соль натрия, магний и пр.). Минеральные вещества также являются важнейшими компонентами системы.
Ионы плазмы (натрий и хлор) поддерживают щелочной уровень крови (ph), обеспечивающий нормальное состояние клетки. Они также выполняют роль поддержки осмотического давления. Ионы кальция участвуют в реакциях мышечных сокращений и влияют на чувствительность нервных клеток.
В процессе жизнедеятельности организма, в кровь поступают продукты обмена, биологически активные элементы, гормоны, питательные вещества и витамины. При этом состав крови конкретно не меняется. Регуляторные механизмы обеспечивают одно из важнейших свойств плазмы крови — постоянство её состава.
Функции плазмы
Основная задача и функции плазмы состоит в перемещении кровяных клеток и питательных элементов. Она также выполняет связку жидких сред в организме, которые выходят за пределы кровеносной системы, поскольку имеет свойство проникать через сосуды человека.
Важнейшей функцией плазмы крови является проведение гемостаза (обеспечение работы системы при которой жидкость способна останавливаться при разных видах кровотечениях и удалять последующий тромб, участвующий в свертываемости). Задача плазмы в крови также сводится к поддержанию стабильного давления в организме.
Применение в донорстве
В каких ситуациях и для чего нужна плазма крови донора? Переливают плазму чаще всего не целиком кровь, а только её компоненты и плазменную жидкость. Производя забор крови, с помощью специальных средств разделяют жидкость и форменные элементы, последние, как правило, возвращаются пациенту. При таком виде донорства, частота сдачи возрастает до двух раз в месяц, но не более 12 раз в год.
Переливание донорской плазмыИз плазмы крови также делают кровяную сыворотку: из состава удаляется фибриноген. При этом сыворотка из плазмы остается насыщена всеми антителами, которые будут противостоять микробам.
Болезни крови, влияющие на плазму
Заболевания человека, которые влияют на состав и характеристику плазмы в крови являются крайне опасными.
Выделяют перечень болезней:
- Сепсис крови — возникает, когда инфекция попадает непосредственно в кровеносную систему.
- Гемофилия у детей и взрослых — генетический дефицит белка, отвечающий за свертываемость.
- Гиперкоагулянтное состояние — слишком быстрая свертываемость. В таком случае вязкость крови увеличивается и пациентам назначают препараты для ее разжижения.
- Глубокий тромбоз вен — формирование тромбов в глубоких венах.
- ДВС-синдром — одновременное возникновение тромбов и кровотечений.
Все заболевания связаны с особенностями функционирования кровеносной системы. Воздействие на отдельные компоненты в структуре плазмы крови способно обратно привести в норму жизнеспособность организма.
Плазма — есть жидкая составляющая крови со сложным составом. Она сама выполняет ряд функций, без которых жизнедеятельность организма человека была бы невозможной.
В медицинских целях, плазма в составе крови чаще эффективнее, чем вакцина, поскольку составляющие её иммуноглобулины реактивно уничтожают микроорганизмы.
Плазма крови человека: состав, функции и возможные заболевания
Плазма представляет собой жидкую часть крови. Ее можно увидеть на ранке, если ее поверхность достаточно велика для этого. Когда красные тельца оседают, остается полупрозрачная жидкость. Плазму не стоит путать с сывороткой крови. Под сывороткой понимается жидкая часть крови, не содержащая фибриноген (белок свертываемости). Плазма вместе с другими жидкостями составляет внутреннюю среду организма, в которой протекают многие процессы. Она выполняет ряд важных функций.
Плазма крови: состав, функции и особенности
Плазма крови – это жидкая часть крови, в которой во взвешенном состоянии находятся клетки крови
Плазма составляет более половины всей крови организма и представляет собой жидкую ее часть. Кровь человека включает в себя различные тельца и клетки (эритроциты, лейкоциты, тромбоциты), а также жидкую среду, в которой все эти элементы находятся и транспортируются.
В состав плазмы крови человека входит вода, белки, другие органические и неорганические соединения, соли, называемые сухими остатком плазмы. Большую часть составляет именно вода (более 90%). Существует практика сбора донорской плазмы и ее переливания в случае необходимости.
Внешне плазма выглядит как прозрачная, чуть густая, иногда мутноватая или желтоватая жидкость. Большую часть сухого остатка составляют белки.
Все функции плазмы крови, как правило, обусловлены именно действием белков:
- Транспорт веществ. Плазма служит транспортной жидкостью для железа, меди, белков, различных лекарств, липидов, жирных кислот. Благодаря плазме различные вещества и элементы крови могут беспрепятственно попадать к тканям и органам. Каждый белок отвечает за транспорт того или иного вещества.
- Поддержание осмотического давления крови. Плазма поддерживает объем крови в норме, а также нормальный объем жидкости в тканях и клетках. По этой причине при нарушении состава белков (особенно альбумина) часто наблюдаются отеки из-за нарушения оттока жидкости.
- Защита организма. Роль плазмы в поддержании нормальной работы иммунной системы очень велика. В состав плазмы входят элементы, которые способны распознавать, связывать и уничтожать чужеродные клетки. Они защищают ткани и активизируются при возникновении очага воспаления.
- Поддержание процесса свертываемости крови. Это важнейшая функция плазмы. Многие белки в составе плазмы участвуют в процессе свертываемости и предупреждают обширную потерю крови. Помимо этого, плазма отвечает и за регуляцию этого процесса, то есть за противосвертывающую способность крови, растворение тромбов и их предупреждение.
- Поддержание кислотно-щелочного баланса. Плазма поддерживает нормальный уровень кислотно-щелочного состава крови.
Белковые органические вещества в плазме
Белковые вещества — главная часть плазмы крови, которые выполняют очень важные функции
Белки составляют большую часть сухого остатка плазмы и отвечают за подавляющую часть ее функций. В составе плазмы находится огромное количество белков (более 500 разновидностей).
Именно белки участвуют в процессе свертываемости, связывают и переносят вещества к органам и тканям, помогают поддерживать кислотно-щелочной баланс крови в норме, а также поддерживают работу иммунной системы, уничтожая враждебные клетки.
Белки плазмы крови:
- Альбумины. Самая большая группа белков, которая составляет больше половины всего сухого остатка плазмы крови. Они растворены в плазме и при нагревании имеют свойство свертываться. Альбумин, который содержится в плазме, называют также сывороточным. Он вырабатывается печенью и выполняет транспортную, питательную функцию. Молекула альбумина невелика, однако одна такая молекула может связать до 50 молекул билирубина. Нормальное количество альбумина в плазме 35-50 г/л. Сниженный уровень этого белка может указывать на заболевания печени.
- Глобулины. Молекулы глобулинов более крупные, чем у альбуминов, и они менее растворимы в жидкостях. Глобулины также вырабатываются печенью, выполняют защитную, транспортную функцию, регулируют свертываемость крови. Глобулины принято делить на несколько разновидностей, каждая из которых отвечает за транспортировку того или иного вещества. Например, а-глобулин отвечает за перенос гормонов, витаминов и микроэлементов. Другие виды глобулина переносят железо, холестерин, а также отвечают за активацию иммунных процессов.
- Фибриноген. Этот белок отвечает за свертываемость крови. Под действием тромбина фибриноген становится нерастворимым и превращается в фибрин, который играет важную роль в образовании и растворении тромбов. Норма фибриногена 2-4 г/л. Во время беременности уровень этого белка в плазме крови может повышаться по физиологическим причинам. Плазма крови без фибриногена называется сывороткой крови. Повышенный уровень фибриногена может привести к различным сердечно-сосудистым заболеваниям.
Небелковые органические вещества, минеральные и неорганические вещества
Помимо белков в плазме содержится небольшое количество других органических соединений, а также минеральные и неорганические вещества, соли, продукты обмена. К небелковым органическим веществам можно отнести азот и его разновидности, к минеральным и неорганическим веществам калий, кальций, фосфор, натрий и т.д.
Общее количество неорганических веществ в плазме, как правило, составляет менее 1% от всего объема плазмы:
- Азот и азотосодержащие вещества в плазме крови. В плазме содержится азот в виде аммиака, азот мочевины, мочевая кислота. Как правило, в плазме крови человека азота и азотистых соединений очень мало. Если их количество повышается, можно говорить о патологическом состоянии организма. Поскольку большее количество (более 50%) всего азота в организме содержится в мочевине, но при повышении уровня азота в плазме подозревают именно нарушение функции почек.
- Глюкоза. Глюкозой называют простой сахар, являющийся незаменимым источником энергии и выделяющийся в процессе распада углеводов. Организм использует глюкозу благодаря гормону поджелудочной железы, называемому инсулином. Он расщепляет глюкозу и регулирует ее транспортировку к различным клеткам. При подозрении на сахарный диабет обязательно определяют уровень глюкозы, как в крови, так и в плазме отдельно, при этом в цельной крови концентрация глюкозы будет ниже, чем в плазме.
- Липиды. Плазма крови содержит различные липиды: холестерин, фосфолипиды, триглицериды, различные жирные кислоты. Холестерин входит в состав клеточных мембран и является своеобразным клеточным строительным материалом. Однако, когда его содержание в крови становится слишком велико, он начинает оседать на стенках кровеносных сосудов, образуя холестериновые бляшки.
- Натрий. Натрий, как правило, практически не содержится в клетках организма, но является важнейшим регулятором внеклеточной циркуляции жидкости. Концентрация натрия в плазме повышается при активном потоотделении и потере жидкости.
Нарушения белкового состава плазмы крови
Отклонение от нормы белков в плазме крови приводит к нарушению обмену веществ в организме
Белки, содержащиеся в плазме, выполняют множество важных функций, поэтому при нарушении содержания одного или нескольких белков в организме начинают происходить сбои, нарушается обмен веществ.
Причины для подобных нарушений самые различные. Большинство белков и прочих питательных веществ поступают в организм с пищей, поэтому при неправильном питании, избытке углеводов и недостатке белка могут возникать нарушения белкового состава плазмы крови. Белковый избыток также не является полезным и приводит к различным нарушениям. Только правильное сбалансированное питание поможет сохранить уровень белка в плазме на нужном уровне.
Белковые нарушения не всегда связаны с питанием. Иногда нарушается состав аминокислот в белках или же нарушается расщепление белков в организме вследствие каких-либо хронических заболеваний и патологических состояний.
Недостаточное содержание белка в плазме может быть наследственным или же приобретенным в результате заболеваний печени, почек, крови.
Повышенное содержание белка наблюдается при заболеваниях пищеварительной системы, когда всасывание аминокислот в кишечнике нарушается. Нарушение обмена белков является причиной такого известного заболевания, как подагра, в результате которого в организме скапливается большое количество мочевой кислоты. К подагре часто приводит недостаточно разнообразная пища, обилие мясных блюд, злоупотребление спиртными напитками, недостаток физической активности.
Полезное видео — Функции и состав крови:
При недостатке белка возникают такие состояния, как недостаточная масса тела, отеки, хроническая усталость, у детей задержка развития, частые простудные заболевания из-за пониженного иммунитета. Анализ крови при этом покажет пониженное содержание альбуминов в сыворотке крови и минеральных веществ. Сильное и несбалансированное белковое голодание может быть опасным и приводить к смертельному исходу. При повышенной содержании белка в плазме наблюдается расстройство работы кишечника, отсутствие аппетита и даже отвращение к пище.
Заболевания, связанные с плазмой крови
При изменении свойств и состава плазмы крови могут возникнуть очень опасные заболевания
Не все заболевания крови затрагивают плазму, чаще они связаны с клетками крови, форменными элементами.
Заболевания, связанные с плазмой крови, считаются особенно опасными, так как плазма является переносчиком тех самых форменных элементов и питательных веществ по всему организму:
- Сепсис. Сепсис возникает в том случае, когда инфекция попадает в кровь. Кровь разносит инфекцию по всему организму, вызывая тяжелое состояние. Чаще всего сепсис вызван бактериями, разносимыми в плазме по организму. Инфекция может попасть в кровь различными путями: через кожу, слизистые, орально, а также при хирургических и диагностических манипуляциях.
- Гемофилия. Это тяжелое заболевание, связанное с нарушением свертываемости крови. При гемофилии значительно возрастает опасность гибели больного от кровопотери или кровоизлияния в мозг. Любая, даже незначительная травма может быть опасной. При этом часто наблюдается врожденный недостаток в плазме крови белков, отвечающих за свертываемость.
- Болезнь фон Вилленбранда. Это заболевание схоже с гемофилией возникновением периодический кровоизлияний и кровотечений. Причиной возникновения болезни также является белок плазмы крови, который отвечает за свертываемость и вырабатывается в недостаточном количестве. Это заболевание называют также атромбопенической пурпурой. У больного часто наблюдается кровоточивость десен, кровотечения из носа, рта, внутренние кровотечения.
- Глубокий венозный тромбоз. Заболевание, при котором тромбы образуются в глубоких венах (чаще всего нижних конечностей), не является смертельным, однако доставляет множество неприятностей и требует серьезного лечения. В некоторых случаях рекомендуют хирургическое вмешательство для восстановления проходимости вен.
Все заболевания крови требуют медицинского наблюдения. Они не лечатся народными средствами и могут быть очень опасными для жизни.