Полиморфизм генов это


Полиморфизм - что это? Генетический полиморфизм

Генетический полиморфизм являет собой состояние, при котором отмечается явное разнообразие генов, но несмотря на это частота наименее распространённого гена в популяции будет составлять более 1% Поддержание полиморфизма происходит благодаря постоянного пере-комбинирования и мутирования генов. Согласно результатам последних исследований, проведённых учеными-генетиками, генетический полиморфизм имеет весьма широкую распространённость, ведь комбинирование гена может доходить до нескольких миллионов.

Мутирование генов

Фото: ДНК. Автор: vchal/shutterstock

В реальной современной жизни гены являются не такими постоянными, однажды и на всю жизнь. Гены могут мутировать с различной переодичностью. Что, в свою очередь, может становиться причиной появления каких-либо ранее не имевшихся признаков, которые бывают далеко не всегда полезны.

Все мутации принято подразделять на следующие виды:

  • генные – приводящие к переменам последовательности нуклеотидов ДНК в каком-либо отдельном гене, что приводит к изменениям также и в РНК и в белке, кодируемом данным геном. Генные мутирования также подразделяются на 2 категории рецессивные и доминантными. Данный вид мутаций может привести к развитию новых признаков, поддерживающих либо подавляющих жизнедеятельность живого существа.

  • генеративное мутирование отражается на половых клетках и передаются при сексуальном контакте;

  • соматическое мутирование не отражается на половых клетках, у животных и людей не передаётся от родителей к детям, а у растений может наследоваться в случае вегетативного размножении;

  • геномное мутирование отражается на изменении численности хромосом в клеточном кариотипе;

  • хромосомное мутирование напрямую затрагивает процесс перестройки структурности хромосом, изменения положений их участков, происходящих из-за разрывов либо выпадением отдельных участков.

К мутированию генов, а, значит, и к повышению распространённости недугов имеющих наследственную природу могут привести следующие составляющие современной жизни:

  • Техногенные катастрофические происшествия;

  • Загрязнение экологической среды (применение пестицидов, добыча и использование горючего, применение средств бытовой химии);

  • Использование лекарственных средств и пищевых добавок, воздействующих на ДНК и РНК;

  • Приём в пищу генетически преобразованных продуктов питания;

  • Длительное, постоянное, либо особенно сильное кратковременное радиационное излучение.

Мутирование генов – процесс весьма непредсказуемый. Это связано с тем,что заранее предугадать, какой ген, каким образом и в какую сторону мутирует – предугадать практически невозможно. Мутирование генов протекает сам по себе, изменяя наследственные факторы и, на примере такого генетически обусловленного заболевания как тромбофилия, вполне очевидно, что далеко не всегда эти преобразования идут на пользу.

Виды полиморфизма

Фото: хромосомы. Автор: Rost9/shutterstock

Среди учёных-генетиков принято различать преходящий и сбалансированный генный полиморфизм. Преходящий полиморфизм отмечается в популяции в том случае, если имеет место замена аллеля, бывшего ранее обыкновенным, иными аллелями, наделяющими своих носителей более высоким уровнем приспособленности. В процессе протекания преходящего полиморфизма отмечается направленное сдвигание (исчисляется в %) различных генотипных форм. Данный вид генного полиморфизма - являет собою основной путь эволюционного процесса. В качестве примера преходящего полиморфизма можно привести процесс индустриального механизма. Таким образом, в результате ухудшения экологического состояния в ряде крупнейших мегаполисов мира более чем у 80-ти разновидностей бабочек, появились более темные расцветки. Это произошло по причине постоянного загрязнения стволов деревьев и последующего уничтожения более светлых особей бабочек насекомоядными птицами. Позже выяснилось, что более темная расцветка тела у бабочек появилась по причине генного мутирования, вызванного загрязнением окружающей среды.

Сбалансированный генный полиморфизм объясняется отсутствием сдвига численного соотношения различных форм и генотипов среди популяций, проживающих в не изменяющихся условиях окружающей среды. Однако процентное соотношение форм либо остается неизменным, либо может варьироваться вокруг какой-либо не изменяющейся величины. В отличие от преходящего генного полиморфизма, сбалансированные полиморфические явления - это неотъемлемая часть непрекращающегося эволюционного процесса.

Генный полиморфизм и состояние здоровья

Фото: современный человек. Автор: chombosan/shutterstock

Современные медицинские исследования доказали, что процесс внутриутробного развития ребёнка может значительно увеличивать вероятность тромбогенных сдвигов. Особенно это ожидаемо в том случае, если женщина имеет предрасположенность либо страдает сама генетическим заболеванием. Чтобы беременность и процесс рождения долгожданного малыша проходили без серьёзных осложнений, врачи рекомендуют поднять свою родословную на предмет того, страдали ли близкие или более дальние родственники будущей мамы наследственно обусловленными заболеваниями.

На сегодняшний день стало известно, что гены такого передающегося по наследству заболевания как тромбофилия, способствуют развитию тромбофлебита и тромбоза во время вынашивания ребёнка, родовой деятельности и послеродового периода.

Кроме того полиморфические изменения генов фактора протромбина FII могут стать причиной неизлечимого бесплодия, развитию наследственно обусловленных пороков развития и даже внутриутробной гибели младенца ещё до рождения либо вскоре после рождения. Кроме того, данное генное преобразование в разы увеличивает риск развития таких недугов, как: тромбофлебит, тромбоэмболия, атеросклероз, тромбоз, инфаркт миокарда и ишемическое поражение сосудов сердца.

Генный полиморфизм фактора Лейдена FV также может значительно усложнить процесс беременности, так как он способен провоцировать привычный выкидыш и способствовать развитию генетических нарушений у ещё нерождённого ребёнка. Кроме того, он может вызвать наступление инфаркта либо инсульта в юном возрасте либо способствовать развитию тромбоэмболии;

Мутирование генов PAI-1 уменьшает активность противостоящей свертыванию системы, по этой причине его принято считать одним из важнейших факторов нормального протекания процесса свёртывания крови.

Развитие таких недугов как тромбоз либо тромбоэмболия – весьма опасны при беременности. Без профессионального медицинского вмешательства они нередко приводят к смертности во время родов как матери, так и ребёнка. Кроме того, роды при наличии этих недугов в большинстве случаев бывают преждевременными.

Когда необходимо сдавать кровь с целью выявления генетических нарушений?

Фото: Сдача анализов. Автор: Alexander Raths/shutterstock

Иметь некоторые сведения о предрасположенности к тем или иным генетическим заболеваниям рекомендуется каждому человеку даже если он не планирует беременность. Подобные знания могут оказать бесценную помощь в профилактике и лечении ускоренного тромбобразования, инфарктов, инсультов, ТЭЛА и других недугов. Однако на сегодняшний день значение информации о своём генетическом фонде играет огромную роль в лечении кардиологических недугов и в акушерском деле.

Таким образом, где назначение анализа на выявление тромбофилии и гемофилии играет особую роль в следующих случаях:

  • При планировании беременности;

  • При наличии патологических осложнений во время беременности;

  • Лечении заболеваний сосудов, сердца, артерий и вен;

  • Выяснении причин выкидышей;

  • Лечении бесплодия;

  • При подготовке к плановым операциям;

  • В лечении онкологических новообразований;

  • При лечении гормональных нарушений;

  • Лицам, страдающим ожирением;

  • При лечении эндокринологических болезней;

  • При необходимости принимать контрацептивные составы;

  • Лицам, занимающимся особенно тяжёлым физическим трудом и пр.

Своевременное развитие медицины позволяет заблаговременно выявить генетические аномалии, определить их полиморфизм и возможную предрасположенность к развитию генетических заболеваний путем проведения сложнейшего анализа крови. Хотя при проведении данного анализа в платных медицинских центрах подобное обследование может требовать некоторых затрат, проведение такого анализа может весьма облегчить лечение либо предупредить развитие множества генетических нарушений.

Обновлено: 2017-09-17 22:47:37

Похожие статьи

204. Полиморфизм генов

Геномы различных организмов в рамках одного биологического вида идентичны с точки зрения общего набора генов и их тонкой внутренней среды. В то же время существует значительное число межиндивидуальных различий, связанных с теми или иными вариациями нуклеотидной последовательности ДНК. Таким образом, любой ген может существовать в виде различных альтернативных признаков - аллелей. Количество аллелей одного гена может составить от двух до нескольких десятков. Большинство генов в каждом организме представлено двумя аллелями, один из которых унаследован от отца, другой от матери. Если оба аллеля идентичны, то организм гомозиготный, если разные –гетерозиготный. В ходе эволюции разные аллели произошли в результате мутаций от единого аллеля-предшественника. Таким образом, гены, которые представлены в популяции несколькими разновидностями ( аллелями) , называют полиморфными.

Мутации (любое изменение структуры ДНК, возникающее спонтанно или индуцировано путем целенаправленного воздействия физическими или химическими факторами) являются причиной возникновения полиморфизмом. Они ведут к возникновению новых аллелей соответствующих генов и лежат в основе генетической изменчивости в живой природе.

Нейтральные мутации (Нормальные полиморфизмов) замена нуклеотида, при которой новый кодон кодирует ту же самую АМК, поэтому не меняет структура белка. Они не элиминируются отбором, имеют достаточно высокую частоту в популяции.

Патологические мутации. Приводят к нарушению механизма транскрипции/ трансляции или к синтезу аномального белкового продукта.

Полиморфизмы нуклеотидных последовательностей обнаружены во всех структурных элементах генома: экзонах, интронах и т.д. Вариации, затрагивающие кодирующие фрагменты генов встречаются редко, а полиморфизм ДНК еще более выражен в некодирующих областях генома, что приводит к изменению в уровне экспрессии мРНК гена.

Типы полиморфизмов

Однонуклеотидный полиморфизм или SNP. Один и тот же ген у разных людей отличается только на один нуклеотид. Самый распространенный. Встречаемость один на 300 нуклеотидов. Эффективно используется в качестве генетического маркера. Помимо замены отдельных нуклеотидов в основе полиморфизма ДНК лежат вставки, делеции, изменение числа микросателлитных и минисателлитных повторов.

Вариации числа копий, CNV. Наблюдаютмя вариации числа копий протяженных участков ДНК, которые могут нести в себе функциональные гены. Происходит это за счет несбалансированный функциональных перестроек: делеция, дупликация.

Ген считается полиморфным, если его самый распространенный аллель встречается менее чем у 99% людей или частота наиболее редкого аллеля при полиморфизме должна быть не менее 1 %.

Полиморфизм широко используется в криминалистике, инструмент для установления личности. В науке и в медицине изучение полиморфизмов ДНК широко используется для исследования популяционного разнообразия , поиск причин возникновения генетических заболеваний, оценка чувствительности пациента к лекарственному средству, выявление генетических ассоциаций.

Генетический полиморфизм

Под генетическим полиморфизмом понимается состояние дли­тельного разнообразия генотипов, когда частота даже наиболее редко встречающихся генотипов в популяциях превышают 1%. Генетиче­ский полиморфизм поддерживается за счет мутаций и рекомбинаций генетического материала. Как показывают многочисленные исследо­вания, генетический полиморфизм широко распространен. Так, по теоретическим расчетам в потомстве от скрещивания двух особей, различающихся лишь по десяти локусам, каждый из которых пред­ставлен 4 возможными аллелями, окажется около 10 млрд. особей с различными генотипами.

Чем больше запас генетического полиморфизма в данной популя­ции, тем легче ей адаптироваться к новой среде и тем быстрее протекает эволюция. Однако, оценить количество полиморфных аллелей посредством традиционных генетических методов практически невозможно, поскольку сам факт присутствия какого-либо гена в генотипе устанавливается путем скрещивания особей, обладающих различными формами фенотипа, определяемого этим геном. Зная, какую долю в популяции составляют особи с различными фенотипами, можно выяснить, сколько аллелей участвуют в формировании данного признака.

Начиная с 60-х годов XX столетия для определения генетического полиморфизма стал широко применяться метод электрофореза белков (в том числе и ферментов) в геле. С помощью этого метода можно вызвать перемещение белков в электрическом поле в зависимости от их размера, конфигурации и суммарного заряда в разные участки ге­ля, а затем по расположению и числу проявляющихся при этом пятен проводить идентификацию исследуемого вещества. Для оценки сте­пени полиморфизма тех или иных белков в популяциях обычно ис­следуют около 20 и более локусов, а потом математическим путем определяют количество аллельных генов, соотношение гомо - и гетерозигот. Как показывают исследования, одни гены, как правило, бы­вают мономорфными, а другие - чрезвычайно полиморфными.

Различают переходный и сбалансированный полиморфизм, что зависит от селективной ценности генов и давления естественного отбора.

Переходный полиморфизм возникает в популяции, когда проис­ходит замещение аллеля, бывшего некогда обычным, другими алле­лями, придающими своим носителям более высокую приспособлен­ность (множественный аллелизм). При переходном полиморфизме наблюдается направленный сдвиг в процентном соотношении форм генотипов. Переходный полиморфизм - это главный путь эволюции, ее динамика. Примером переходного полиморфизма может быть явление индустриального механизма. Так, в результате загрязнения атмосферы в промышленных городах Англии за последние сто лет у более чем 80 видов бабочек, появились темные формы. Например, если до 1848 г. березовые пяденицы имели бледно-кремовую окраску с черными точками и отдельными темными, пятнами, то в 1848 г. в Манчестере появились первые темнотелые формы, а к 1895 г. уже 98% пядениц стало темнотелыми. Это произошло вследствие закопчения стволов деревьев и избирательного выедания светлотелых пя­дениц дроздами и малиновками. Позже было установлено, что темная окраска тела у пядениц осуществляется мутантным меланистическим аллелем.

Сбалансированный полиморфизм характеризуется отсутствием сдвига числовых соотношений различных форм, генотипов в популя­циях, находящихся в стабильных условиях среды. При этом процент­ное соотношение форм либо из поколения в поколение остается од­ним и тем же, либо колеблется вокруг какой-то постоянной величины. В противоположность переходному, сбалансированный полиморфизм - это статика эволюции. И.И. Шмальгаузен (1940) назвал его равновесным гетероморфизмом.

Примером сбалансированного полиморфизма служит наличие двух полов у моногамных животных, поскольку они обладают равно­ценными селективными преимуществами. Их соотношение в популя­циях составляет 1:1. При полигамии селективное значение у предста­вителей разных полов может отличаться и тогда представители одно­го пола либо уничтожаются, либо в большей степени, чем особи дру­гого пола, отстраняются от размножения. Другой пример - группы крови человека по АВО-системе. Здесь частота разных генотипов в различных популяциях может варьировать, однако, в каждой конкретной популяции она остается постоянной из поколения в поколение. Это объясняется тем, что ни один генотип не обладает селективным преимуществом перед другими. Так, хотя у мужчин с первой группы крови, как показывает статистка, ожидаемая продолжительность жизни, выше, чем у мужчин с другими группами крови, у них чаше, чем у других, развивается язва двенадцатиперстной кишки, которая в случае прободения может привести к смерти.

Генетическое равновесие в популяциях может нарушаться давлением спонтанных мутаций, возникающих с определенной частотой в каждом поколении. Сохранение или же элиминация этих мутаций зависит от того, благоприятствует ли им естественный отбор или про­тиводействует. Прослеживая судьбу мутаций в той или иной популя­ции, можно говорить о ее адаптивной ценности. Последняя равна 1, если отбор не исключает ее и не противодействует распространению. В большинстве случаев показатель адаптивной ценности мутантных генов оказывается меньше 1, а если мутанты совершенно не способны размножаться, то он равен нулю. Такого рода мутации отметаются естественным отбором. Однако, один и тот же ген может неоднократ­но мутировать, что компенсирует его элиминацию, производимую отбором. В таких случаях может быть достигнуто равновесие, когда появление и исчезновение мутировавших генов становится сбаланси­рованным. Примером может служить серповидноклеточная анемия, когда доминантный мутантный ген в гомозиготе приводит к ранней гибели организма, однако, гетерозиготы по этому гену оказываются устойчивыми к заболеванию малярией. В районах, где распростране­на малярия, имеет место сбалансированный полиморфизм по гену серповидноклеточной анемии, поскольку наряду с элиминацией гомо­зигот, действует контротбор в пользу гетерозигот. В результате разновекторного отбора в генофонде популяций поддерживаются в каждом поколении генотипы, обеспечивающие приспособленность организмов с учетом местных условий. Помимо гена в серповидноклеточности, в популяциях человека есть ряд других полиморфных генов, которые как предполагают, вызывают явление гетерозиса

Рецессивные мутации (в том числе и вредные), не проявляющиеся фенотипически у гетерозигот, могут накапливаться в популяциях до более высокого уровня, чем вредные доминантные мутации.

Генетический полиморфизм является обязательным условием для непрерывной эволюции. Благодаря ему в изменяющейся среде всегда могут быть генетические варианты предаптированные к этим усло­виям. В популяции диплоидных раздельнополых организмов может храниться в гетерозиготном состоянии, не проявляясь фенотипически, огромный запас генетической изменчивости. Уровень последней, оче­видно, может быть еще более высоким у полиплоидных организмов, у которых за фенотипически проявляющимся нормальным аллелем может скрываться не один, а несколько мутантных аллелей.

Полиморфизм генов при тромбофилии

Каждый человек уникален, и эта уникальность возможна благодаря индивидуальному сочетанию генов (генотипу). Общий набор генов у всех людей одинаков, он определяет характерные признаки с точки зрения всего вида. Неповторимые отличия каждого организма возникают благодаря различным комбинациям элементов ДНК.

Клетки ДНК, расположенные на одинаковых участках хромосомы (локусах) и предусматривающие разные состояния одного и того же признака, являются полиморфными (polys — многий и morphe — вид, форма, образ). Их двойственная природа обусловлена разными аллелями, или, по-другому, формами.

Разные аллели возникают вследствие мутации, то есть спонтанного или направленного под воздействием провоцирующих факторов изменения структуры ДНК. Полиморфизм генов определяет индивидуальные различия в развитии физических или психических признаков человека, но кроме этого, он обуславливает предрасположенность к тем или иным заболеваниям.

В тех случаях, когда мутации определяют не наличие самой патологии, а только предрасположенность к ней, она может развиться только под воздействием определенных внешних или внутренних факторов. В частности, генетическая тромбофилия может начать развиваться из-за беременности или воздействия заболеваний сердечно-сосудистой системы – мерцательной аритмии, артериальной гипертензии, варикозного расширения вен и т. д.

Даже под воздействием провоцирующих факторов тромбофилия развивается не у всех склонных к этому людей, все зависит от индивидуальных особенностей организма.

У большинства пациентов с предрасположенностью к образованию тромбов эта особенность является именно врожденной, то есть приобретенной еще во время внутриутробного развития. В этом случае есть два варианта возникновения полиморфизма. Во-первых, он может возникнуть в результате объединения разных аллелей отца и матери в одном гене, во-вторых, полиморфный ген может быть полностью унаследован от одного из родителей.

У каждого человека может быть множество полиморфных генов, но не все из них могут привести к возникновению тромбофилии. Некоторые из них обуславливают вполне безобидные отличия конкретного человека от других, другие дают начало генетическим заболеваниям. На возникновение тромбофилии может повлиять всего несколько генов, которые относятся к системе свертывания крови.

Полиморфизм протромбина

Протромбин (коагуляционный фактор II или F2) – это одна из главных составляющих свертывающей системы. Это сложная белковая структура, которая предшествует тромбину – главному ферменту гемостаза (свертывания), который непосредственно участвует в формировании тромбов. При проведении анализа на полиморфизм протромбина можно получить следующие результаты:

  1. Протромбиновое время. Это значение, выраженное в секундах, которое соответствует показателю времени свертываемости крови. В норме протроибированное время должно находиться в диапазоне 9-12,6 секунд.
  2. Протромбиновый индекс. Это показатель, вычисляемый, как отношение протромбинового времени пациента к нормативному значению для конкретного возраста и пола в процентах. Нормальным считается протромбиновый индекс в пределах от 77 до 120%.
  3. Протромбин по Квику. Это наиболее современный и точный анализ на полиморфизм протромбина. Результат исследования рассчитывается в виде соотношения активности плазмы пациента и нормативного значения контрольной плазмы в процентах. Нормальным показателем считается 78-142%.

На возникновение предрасположенности к тромбозам влияет повышенный протромбиновый индекс, который может превышать норму в 1,5-2 раза. Возникающая мутация наследуется по аутосомно-доминантному типу, то есть даже если ген второго родителя будет нормальным, ребенок унаследует полиморфизм, который может привести или не привести к тромбофилии.

Мутация Лейден

Полиморфизм лейденского фактора (фактора V) коагуляционной системы является одним из наиболее опасных в плане риска развития тромбоза. Этот компонент процесса свертывания, или, по-другому, проакцелерин, является белком, синтезирующимся в печени. Он представляет собой кофактор, то есть вспомогательный элемент, который участвует в преобразовании протромбина в тромбин.

Мутация Лейден встречается у 5% всего населения планеты, а конкретно у пациентов, страдающих от тромбоза, эта особенность встречается в 20-40%. При этом если оба родители обладали полиморфным геном проакцелерина, то риск развития тромбофилии у ребенка составляет 80%, если же явление встречалось только у отца или у матери, вероятность 7%.

Риск развития тромбофилии при мутации лейденского фактора повышается при наличии следующих провоцирующих факторов:

  • хирургические вмешательства, особенно на органах малого таза;
  • период после операции или травмы, предполагающий длительное статическое положение;
  • злокачественные опухоли;
  • избыточный вес;
  • хронические заболевания сердечно-сосудистой системы;
  • прием лекарств из некоторых фармакологических групп;
  • прием оральных контрацептивов (противозачаточных таблеток) и других гормональных средств;
  • беременность, роды и послеродовой период;
  • частые длительные переезды и перелеты;
  • частая катетеризация вен;
  • обезвоживание.

У большинства людей с наличием лишь одного мутировавшего гена проакцелерина при нормальной второй аллели за всю жизнь не возникает ни одного случая тромбоза. Если же полиморфный ген представлен сразу двумя измененными аллелями, то без регулярных профилактических мир предотвратить влияние тромбофилии практически невозможно.

Полиморфизм фактора VII

Фактор VII или F7 (проконвертин) – это элемент свертывающей системы крови, который участвует в раннем этапе формирования тромба. Совместно с некоторыми другими факторами гемостаза он способствует активации фактора X, который, в свою очередь, переводит протромбин из пассивного состояния в активное и способствует образованию тромбина.

Проконвертин синтезируется в печени под воздействием витамина K.

В отличие от полиморфизма других генов, мутация фактора VII при тромбофилии оказывает положительное влияние. Изменение в первичной структуре проконвертина способствует снижению его ферментной активности, то есть он будет в меньше степени влиять на активацию преобразования протромбина в тромбин.

Полиморфизм гена фактора VII гемостаза влияет не только на снижение риска развития тромбоза, но также на уменьшение вероятности возникновения невынашивания беременности, то есть выкидыша. Также под воздействием мутации снижается риск инфаркта миокарда, а если он все же случается, то вероятность летального исхода так же уменьшается. Однако вместе с тем повышается риск кровотечений.

Полиморфизм фибриногена

Фибриноген (фактор I, F1) – это специфический белок, который находится в крови в растворенном виде и при кровотечении является основой для формирования кровяного сгустка. Под влиянием тромбина этот компонент преобразуется в фибрин, который под воздействием ферментов преобразуется непосредственно в тромб.

Фибриноген называют F1, поскольку он был обнаружен учеными самым первым.

Полиморфизм фибриногена значительно повышает вероятность образования тромба, однако в большинстве случаев это происходит под влиянием внешних негативных факторов. К ним относятся воспалительные, инфекционные и аутоиммунные патологии. Также могут повлиять следующие провокаторы:

  • сахарный диабет;
  • избыточный вес;
  • злокачественные новообразования;
  • острый инфаркт миокарда;
  • травмы кожи;
  • курение;
  • гепатиты;
  • туберкулез.

Следует также учитывать, что при сдаче анализов на повышение уровня фибриногена может повлиять стресс, предшествующая интенсивная физическая нагрузка, повышенный уровень холестерина, прием оральных контрацептивов и т. д. Не рекомендуется проводить исследование при простудных заболеваниях.

Анализы на полиморфизм генов

Полиморфизм генов диагностируется с помощью специфического анализа крови, сдаваемой из вены утром натощак. Проходить такое обследование можно в клинических диагностических центрах или частных больница, поскольку в государственных поликлиниках такую услугу не предоставляют. Стоит подготовиться к тому, что каждый анализ может стоить от 1,5 до 4 тысяч рублей, а их может понадобиться несколько.

Назначение на каждый анализ дает лечащий врач по результатам общего исследования крови. Направить на обследование может любой специалист – терапевт, хирург, флеболог и т. д., но расшифровывать результаты должен только гематолог. Не стоит пытаться сделать заключение самостоятельно.

Нередко анализ на полиморфизм генов назначается во время беременности, поскольку тромбофилия в период вынашивания ребенка может привести к непоправимым последствиям. К ним относится задержка внутриутробного развития плода, замирание беременности, выкидыш и преждевременные роды. Несмотря на это, каждая женщина с таким диагнозом может родить здорового ребенка без применения кесарева сечения, если будет полностью придерживаться рекомендаций врача.


Смотрите также