Электролиты какие бывают


Электролиты: свойства и классификации

Электролиты – растворы, имеющие в своем составе заряженные частицы, которые принимают участие в переносе зарядов между электродом и катодом. Могут быть сильными и слабыми. Процесс распада молекул на ионы называется электролитической диссоциацией. Неэлектролиты – водные растворы, в которые вещество перешло в виде молекул с сохранением первоначальной структуры. Все молекулы вещества в таких растворах окружены гидратными оболочками (молекулами воды) и не могут переносить электрический заряд.

Растворение кристалла поваренной соли

Как протекает электролитическая диссоциация

Вещества-электролиты устроены за счет ионных или ковалентных полярных связей.

Во время растворения происходит химическое воздействие вещества с молекулами воды, в результате чего оно распадается на электроны. Молекулы воды – активные диполи с двумя полюсами: положительным и отрицательным. Атомы водорода располагаются под углом 104,5°, за счет этого молекула воды приобретает угловую форму.

Вещества, имеющие ионную кристаллическую решетку, намного легче диссоциируют, они уже состоят из активных ионов, а диполи воды во время растворения только ориентируют их. Между диполями воды и ионами электролита возникают усилия взаимного притяжения, связи кристаллической решетки ослабевают и ионы покидают кристалл.

Последовательность процессов при диссоциации растворов с ионной связью

На первом этапе молекулы вещества ориентируются около диполей воды, далее происходит гидратация, а на завершающем этапе диссоциация.

Похожим образом диссоциируют электролиты, у которых молекулы строятся за счет ковалентных связей. Разница только в том, что диполи воды превращают ковалентные связи в ионные. При этом наблюдается такая последовательность процессов:

Электролитическая диссоциация полярной молекулы хлороводорода на гидратированные ионы

В растворах происходит хаотическое движение гидратированных ионов, они могут сталкиваться между собой и опять образовывать отдельные связи. Такой процесс называется ассоциацией.

Классификация электролитов

Все электролиты кроме ионов содержат молекулярные структуры, неспособные переносить разряд. Процентное содержание этих элементов оказывает прямое влияние на возможность проводить ток, параметр обозначается α и определяется по формуле:

Для вычисления берется отношение количества частиц, распавшихся на ионы к общему числу растворенных частиц. Степень распада определяется опытным путем, если она равняется нулю, то диссоциация полностью отсутствует, если равняется единице, то все вещества в электролите распались на ионы. С учетом химического состава электролиты имеют неодинаковую степень диссоциации, параметр зависит от природы и концентрации раствора, чем ниже концентрация, тем выше диссоциация. Согласно данным определениям все электролиты делятся на две группы.

  1. Слабые электролиты. Имеют очень незначительную степень диссоциации, химические элементы почти не распадаются на ионы. К таким электролитам относится большинство неорганических и некоторые органические кислоты. Слабые электролиты расщепляются на ионы обратимо, процессы диссоциации и ассоциации по интенсивности могут сравниваться, раствор очень плохо проводит электрический ток.

Способность к диссоциации зависит от нескольких факторов, слабые электролиты во многом определяются химическими и физическими особенностями вещества. Важное значение имеет химический состав растворителя.

  1. Сильные электролиты. Эти растворы в водных растворах интенсивно диссоциируют на ионы, сильные электролиты могут иметь степень диссоциации равную единице. К ним относятся почти весь перечень солей и многие кислоты неорганического происхождения. Сильные электролиты диссоциируют необратимо:

От каких факторов зависит степень диссоциации

  1. Природа растворителя. Степень диссоциации веществ увеличивается прямо пропорционально полярности. Чем больше полярность, тем выше активность имеют сильные электролиты.
  2. Температура во время подготовки раствора. Повышение температуры растворителя увеличивает активность ионов и их количество. Правда, при этом есть вероятность одновременного повышения ассимиляции. Процесс растворения веществ в растворителе должен непрерывно контролироваться, при обнаружении отклонений от заданных параметров немедленно вносятся корректировки.
  3. Концентрация химических веществ. Чем выше концентрация, тем больше вероятность, что после растворения образуются слабые электролиты.

График зависимости константы диссоциации от концентрации

Главные положения теории электролитической диссоциацииСогласно существующей теории, электролитическая диссоциация позволяет растворам проводить электрический ток. В зависимости от этой способности они делятся на электролиты и неэлектролиты. Процесс распада веществ на ионы называется диссоциацией, положительно заряженные двигаются к катоду и называются катионами, негативно заряженные двигаются к аноду и называются анионами. Состав электролитов оказывает влияние на способность к диссоциации, технические нормы позволяют определять эту зависимость количественно.

С учетом получаемых после диссоциации ионов изменяется свойство электролитов. Вне зависимости от химического характера образуемых после диссоциации ионов, электролиты подразделяются на три большие классы:

1.Кислоты. В результате распада образуются анионы кислотного остатка и катионы водорода. Кислоты многоосновные могут преобразовываться по первой степени:

2. Основания. Электролиты, дисоциирующие на анионы гидроксогрупп и катионы металла.

3. Соли. Электролиты диссоциируют на анионы кислотного остатка и катионы металлов. Процесс происходит в одну ступень.

Химические свойства электролитов описываются при помощи химических уравнений и определяются свойствами образованных ионов. Для удаления вредных химических соединений, выделяемых в воздух во время диссоциации, используются химически нейтральные пластиковые воздуховоды. Перспективы развития теории диссоциацииНа современном этапе развития теории ученые предпринимают попытки описать динамические и термодинамические свойства электролитов учитывая концепцию ионно-молекулярной структуры. Классическая теория считается примитивной, в ней ионы представляются как заряженные жесткие сферы. Главный недостаток традиционной теории – невозможность объяснить локальное снижение диэлектрической проницательности в первом приближении. Ряд растворителей поддается описанию физических свойств ступенчатой зависимостью, но протонные водные растворители имеют намного сложнее процессы релаксации.

Непримитивные модели, рассматривающие ионы в одинаковом масштабе, делятся на две группы:

  1. Первая. Жидкие фазы рассматриваются как максимально разупорядочные кристаллы, размеры не более пяти молекулярных диаметров.
  2. Вторая. Жидкости описываются как сильно неидеальные газы. Молекулы растворителя являются точными или обыкновенными диполями.

Зависимость диэлектрической проницаемости от расстояния между ионами

Неравновесные явления в растворах электролитов

Неравновесный распад объясняется несколькими физическими процессами.

  1. Миграцией и диффузией ионов. Обуславливается сравнительно большим количеством ионных перескоков за единицу времени в сравнении с иными направлениями.

Контакт двух растворов с различными показателями концентрации

  1. Эквивалентной и удельной электропроводностью. Электропроводность обеспечивается миграцией ионов, замеры выполняются таким способом, чтобы исключалось влияние градиента химического потенциала.

Принципиальная схема моста переменного тока во время измерения электропроводности

  1. Числом переноса. Определяется суммой электрической проворности аниона и катиона. Доля тока называется электрическим числом переноса.

Схема определения числа переноса

Перемещение ионов в среде электрического поля по статистике является усредненным процессом, ионы делают беспорядочные перескоки, а элегическое поле оказывает только определенное влияние, точно рассчитать силу и вероятность влияния невозможно. В связи с этим, аналогия диссоциации с обыкновенным поступательным движением твердых тел весьма приближенная, но она позволяет принимать правильные качественные выводы.

Какие свойства у электролитов

Электролит - это вещество, которое способно диссоциировать на ионы. В зависимости от степени диссоциации, электролиты делят на сильные и слабые. Диссоциация электролитов может проходить в растворах, расплавах и даже в самих кристаллах электролита.

Содержание статьи

Электролитами называются вещества, способные проводить электрический ток за счет собственной диссоциации на ионы. Диссоциация происходит в расплавах и растворах, либо внутри самих электролитов - за счет движения ионов в их кристаллических решетках.

Наиболее яркими примерами электролитов являются растворы солей, оснований и кислот. В некоторых случаях диссоциация происходит в кристаллах - например, в случае диоксида циркония или йодида серебра.

Если распад на ионы происходит в растворе или расплаве, этот процесс называется электролитической диссоциацией. Параллельно с диссоциацией происходит и обратный процесс, когда ионы ассоциируются обратно в молекулы. Если условия среды неизменны, в расплаве или растворе наблюдается равновесие - какая-то часть вещества остается диссоциированной на ионы, а какая-то - ассоциированной в молекулы.

Электролиты принято делить на две группы, в зависимости от их способности диссоциировать. К сильным электролитам относят вещества, у которых степень диссоциации на ионы составляет 100% (то есть равняется единице). Сильными электролитами являются соли, основания и многие кислоты (соляная, бромоводородная, йодоводородная, азотная).

Слабыми электролитами называют вещества, диссоциирующие не полностью. Степень их диссоциации всегда составляет меньше единицы. При этом, чем выше концентрация таких электролитов в растворе, тем меньше степень их диссоциации. К слабым электролитам относится вода, некоторые слабые кислоты и основания.Между сильными и слабыми электролитами не существует какой-то четкой границы. Так, одно вещество может проявлять свойства сильного электролита в одном растворе и свойства слабого - в другом.Электролиты обладают рядом уникальных свойств. Если в раствор электролита поместить электроды с разным потенциалом, то через раствор пойдет электрический ток. Общеизвестно, что растворы веществ имеют более высокую температуру кипения и более низкую температуру замерзания, чем сам растворитель. Но растворы электролитов ведут себя несколько иначе - по сравнению с растворами других веществ, они имеют более высокую температуру кипения и более низкую температуру замерзания. Проще говоря, раствор электролита ведет себя так, как будто в нем содержится больше молекул вещества, чем на самом деле.

Благодаря своим особенным свойствам, электролиты находят широкое применение в промышленности. С их помощью выделяют металлы, наносят позолоту, их применяют в источниках тока и при изготовлении конденсаторов.

Распечатать

Какие свойства у электролитов

Растворы электролитов

Растворы электролитов представляют собой особые жидкости, которые частично либо полностью находятся в виде заряженных частиц (ионов). Сам процесс расщепления молекул на отрицательно (анионы) и положительно заряженные (катионы) частицы называют электролитической диссоциацией. Диссоциация в растворах возможна только благодаря способности ионов взаимодействовать с молекулами полярной жидкости, которая выступает в качестве растворителя.

Какими бывают электролиты

Растворы электролитов делятся на водные и неводные. Водные изучены довольно хорошо и получили очень широкое распространение. Они есть практически в каждом живом организме и активно участвуют во многих важных биологических процессах. Неводные электролиты применят для проведения электрохимических процессов и различных химических реакций. Их использование привело к изобретению новых химических источников энергии. Они играют важную роль в фотоэлектрохимических элементах, органическом синтезе, электролитных конденсаторах.

Растворы электролитов в зависимости от степени диссоциации можно разделить на сильные, средние и слабые. Степень диссоциации (α) – это отношение количества распавшихся на заряженные частицы молекул к суммарному числу молекул. У сильных электролитов значение α приближается к 1, у средних α≈0,3, а у слабых α 0).

  • На этой стадии растворитель начинает взаимодействовать с ионами электролита, в результате чего образуются сольваты (в водных растворах - гидраты). Этот процесс называется сольватацией и является экзотермическим, т.е. происходит выделение тепла (∆ Нгидр < 0).
  • Последний этап – диффузия. Это равномерное распределение гидратов (сольватов) в объеме раствора. Данный процесс требует энергетических затрат и поэтому раствор охлаждается (∆Ндиф > 0).
  • Таким образом, суммарный тепловой эффект растворения электролита можно записать в таком виде:

    ∆Нраств = ∆Нразр + ∆Нгидр + ∆Ндиф

    От того, какими окажутся составляющие энергетические эффекты зависит конечный знак общего теплового эффекта растворения электролита. Обычно этот процесс носит эндотермический характер.

    Свойства раствора зависят прежде всего от природы образующих его компонентов. Кроме того, на свойства электролита оказывает влияние состав раствора, давление и температура.

    В зависимости от содержания растворенного вещества все растворы электролитов можно разделить на предельно разбавленные (в которых содержатся лишь «следы» электролита), разбавленные (с небольшим содержанием растворенного вещества) и концентрированные (со значительным содержанием электролита).

    Химические реакции в растворах электролитов, которые вызываются прохождением электрического тока приводят к выделению на электродах определенных веществ. Это явление называется электролизом и часто применяется в современной промышленности. В частности, благодаря электролизу получают алюминий, водород, хлор, гидроксид натрия, пероксид водорода и многие другие важные вещества.


    Смотрите также