Анатомия головного мозга кт
Компьютерная томография головного мозга и лица: интерактивный атлас анатомии человека
Компьютерная томография головного мозга и лица: интерактивный атлас анатомии человека
КТ-анатомия головы: мозг, кости черепа, лицевой синус
Синусы твердой мозговой оболочки, Вены, Артерии
Кости черепа Аксиальный КТ
Основание черепа - КТ: Отверстия, Полость носа, Околоносовые пазухи
Кости черепа : Анатомия , КТ
Рентгеновская компьютерная томография головного мозга (методика, анатомия, цистернография, перфузия) - презентация
1 Рентгеновская компьютерная томография головного мозга (методика, анатомия, цистернография, перфузия)
2 МЕТОДИКА КТ-ИССЛЕДОВАНИЯ ГОЛОВНОГО МОЗГА
3 Компьютерные томограммы головы принято подразделять на три уровня: нижний (базальный), содержащий информацию о задней черепной ямки и базальных отделах конечного мозга; средний, дающий представление о подкорковых (базальных) ядрах; верхний, содержащий информацию о верхних отделах коры полушарий большого мозга.
4 НИЖНИЙ УРОВЕНЬ
5 СРЕДНИЙ УРОВЕНЬ
6 Различают три группы подкорковых ядер: - полосатое тело (corpus striatum), - ограду (claustrum) - миндалевидное тело (corpus mygdaloideum). Полосатое тело представлено хвостатым и чечевицеобразным ядрами, отделенными друг от друга внутренней капсулой. Хвостатое ядро состоит из головки, тела и хвоста. Чечевицеобразное ядро расположено ниже и латеральнее хвостатого ядра и представлено тремя члениками: наружный, самый темный, называется скорлупой (putamen), а два внутренних, более светлых объединяются в бледный шар. Ограда (claustrum) имеет вид тонкой пластинки серого вещества, расположенного между скорлупой и корой островка. внутренняя капсула таламус (talamus opticus);
7 ВЕРХНИЙ УРОВЕНЬ
8 Индексы и денситометрические показатели головного мозга Плотность серого веществаHU30-35 Плотность белого веществаHU25-29 Плотность перивентрикулярных зонHU5-8 Ширина передних рогов БЖмм 2-5 Ширина латеральной бороздымм 3-5 Ширина III желудочкамм 2,5-4,5 Ширина IV желудочкамм Индекс III желудочкаабс.0,3-0,4 Индекс IV желудочкаабс Индекс тел БЖабс Индекс передних рогов БЖабс.24-26
9 Индекс IV желудочка, тел и передних рогов боковых желудочков вычисляют по формуле: поперечный размер тел БЖ (см) Индекс тел БЖ = __________________________________________ Х 100 макс, расстояние между внутренними пластинками костей черепа (см) Интервал колебаний поперечного размера БЖ на уровне их тел составляет 1,2-1,8 см, среднее значение размера БЖ на уровне тел 1,3-1,5 см. Индекс = 18,4 – 22,0 до 50 лет; Индекс = 22,6 – 26,0 после 50 лет; Если эти величины увеличены, то это гидроцефалия, нужно отметить какая она (окклюзионная или вызвана другими причинами). Индекс поперечный размер передних рогов БЖ (см) передних рогов БЖ = ______________________________________ _ Х 100 макс, расстояние между внутренними пластинками костей черепа (см) Индекс до 60 лет = 24-26,3; Индекс после 60 лет = 28,2-29,4 Индекс максимальная толщина IV желудочка (см) IV желудочка = ______________________________________________ Х 100 наибольший диаметр задней черепной ямки Индекс = 11,3-13 до 60 лет, после 60 лет не изменяется.
10 Измерение тел и передних рогов боковых желудочков
11 Вещество головного мозга в пределах нормы
12 Отклонение от нормы
13 ликворея
14 Ликвородинамика Ликворопродукция Ликвороток Ликворорезорбция Развитие представлений Состоит из:
15 Окклюзия водопровода мозга МРТ Т1 ВИ МРТ Т2 ВИ
16
17
18
19
20 после консервативного лечения после консервативного лечения назальная ликворея прекращается назальная ликворея прекращается в 90% случаев, в 90% случаев, ушная - в 98% случаев ушная - в 98% случаев у остальных пострадавших для у остальных пострадавших для ликвидации ликвореи требуется ликвидации ликвореи требуется хирургическое вмешательство хирургическое вмешательство
21 КТ существенно дополняет, а порой и превосходит данные краниографии по демонстративности переломов костей свода и основания черепа но для уточнения локализации ликворной фистулы КТ оказывается недостаточной и в этих случаях наиболее надёжной и достоверной на сегодняшний день является
22 КТ- цистернография с предварительным эндолюмбальным введением современных неионных рентгеноконтрастных препаратов омнипака, ультрависта, и др. из расчёта 0,15 мл на 1 кг массы тела
23
24
25 Применяя высокое разрешение при КТ-цистернографии, можно более чётко визуализировать: костные структуры мельчайшие структуры ликворосодержащих пространств
26 .
27
28
29 с применением высокого разрешения является наиболее информативным методом определения анатомической локализации функционирующей ликворной фистулы и достаточным для выбора адекватного хирургического вмешательства КТ- цистернография
30 до операции Анапластическая астроцитома
31 после операции Анапластическая астроцитома
32 С контрастным веществом Без контрастного вещества Трансформация в глиобластому
33 КТ- цистернография
34
35 Состояние после удаления глиобластомы (ликворея)
36 Ликворная фистула
Анатомия сосудов головного мозга
Снабжение головного мозга артериальной кровью осуществляется за счет двух пар сосудов - внутренних сонных и позвоночных артерий.
Внутренняя сонная артерия вступает в полость черепа через сонный канал, расположенный в пирамиде височной кости. По выходе из него артерия располагается сбоку от турецкого седла на теле клиновидной кости в пещеристой пазухе, направляется вперед, к переднему клиновидному отростку, здесь делает резкий изгиб кзади и кверху, прободает твердую мозговую оболочку и разделяется на переднюю и среднюю мозговые артерии. Еще до разделения па эти ветви от внутренней сонной артерии отходят глазничная ветвь и задняя соединительная артерия, через которую осуществляется связь двух артериальных систем головного мозга - системы a. carotis interna и системы a. verte-bralis.
Позвоночная артерия идет через отверстия в поперечных отростках шейных позвонков, вступает в полость черепа через большое затылочное отверстие, поднимается вверх по блюмен-бахову скату и сливается с одноименной артерией противоположной стороны в одну основную артерию. Основная артерия на уровне переднего края варолиева моста делится на две задние мозговые артерии, повертывающие под прямым углом в разные стороны. В полости черепа от позвоночных и от основной артерий отходит ряд ветвей, которые снабжают кровью спинной мозг, ствол с соответствующими черепномозговыми нервами и мозжечок.
Таким образом, кровоснабжение большого мозга осуществляется через две связанные между собой артериальные системы, причем каждое полушарие получает кровь из трех крупных сосудов - передней, средней и задней мозговых артерий.
Передняя мозговая артерия, отделившись от внутренней сонной артерии, сразу же направляется медиально к продольной щели головного мозга и отдает короткий анастомоз к одноименной артерии противоположной стороны. В продольной щели головного мозга обе передние мозговые артерии идут симметрично по внутренним поверхностям полушарий, поднимаются кверху, огибают колено мозолистого тела и ложатся в борозду мозолистого тела. От восходящей и горизонтальной части передней мозговой артерии отходит ряд ветвей, снабжающих кровью всю медиальную поверхность полушария от лобного полюса до за-тылочно-теменной борозды, мозолистое тело и нижнюю поверхность лобной доли. На наружной поверхности полушария передняя мозговая артерия питает сравнительно небольшую территорию. Существует несколько вариантов ветвления и хода передней мозговой артерии и ее ветвей. Большей частью ветвление ее идет по магистральному типу - периферические ветви отходят от одного основного ствола, но может быть дихотомический тип ветвления, когда основной ствол делится на две равные по калибру ветви, располагающиеся одна над другой. Иногда верхняя дуга, образованная за счет отхождения лобных артерий общим стволом, превышает по своей толщине сравнительно тонкий стволик передней мозговой артерии.
Количество ветвей передней мозговой артерии может быть различным, но чаще всего от ствола артерии отходят обонятельная, нижняя, средняя и верхняя лобные, 2-3 центральные и 2 задние ветви. Обе задние ветви передней мозговой артерии соединяются анастомозами с ветвями задней мозговой артерии. Задний истонченный отдел передней мозговой артерии носит название a. pericallosa.
Средняя мозговая артерия сразу же после отделения от внутренней сонной артерии направляется кнаружи и уходит в сильвиеву борозду, где ложится на островок Рейля и распадается на корковые ветви, число которых очень непостоянно. Корковые ветви средней мюзговой артерии выходят на поверхность полушария и снабжают кровью почти всю наружную поверхность лобной, теменной, височной и затылочной долей, за исключением затылочного полюса, а также, частично, внутреннюю поверхность полушария в области центральных извилин. Различают 3 типа ветвления основного ствола артерии - магистральный, дихотомический и рассыпной. В зависимости от направления и области васкуляризации, различают группу передних ветвей, идущих к лобному отделу, группу верхних ветвей, питающих центральные извилины, группу задних ветвей, направляющихся к теменной и затылочной долям, и группу нижних ветвей, огибающих височную долю.
Задняя мозговая артерия от переднего края варолиева моста направляется кнаружи и вперед, огибает ножку мозга и сливается с задней соединительной артерией. Далее она ложится в борозду морского конька (на внутренней поверхности височной доли) и распадается на ветви, васкуляризирующие ствол мозга, задний отдел бокового желудочка, сосудистые сплетения III желудочка и корковые ветви, разветвляющиеся в височной и затылочной долях, снабжая кровью главным образом их внутренние и базальные, в меньшей степени - наружные поверхности.
При значительной толщине задней соединительной артерии задняя мозговая артерия является как бы ее продолжением и получает кровь из системы внутренней сонной артерии. Такие соотношения наблюдаются примерно в 20%.
Связь между 3 парами мозговых артерий, между системами сонной и позвоночной артерий осуществляется главным образом через виллизиев круг - сосудистое кольцо, располагающееся на основании мозга вокруг турецкого седла. В состав виллизиева круга входят обе внутренние сонные артерии, две передние мозговые артерии, передняя коммуникационная артерия, две задние коммуникационные артерии, две позвоночные и основная артерии.
При повреждений одной из крупных артерий васкуляризация соответствующей зоны может осуществляться из другой артериальной системы через виллизиев круг.
Отток венозной крови из полости черепа происходит через внутренние яремные вены, куда кровь поступает из венозных синусов. Число вен мозга, калибр и расположение их очень непостоянны. Вены мозга делятся на две группы - поверхностные, или вены извилин, и глубокие, или вены подкорковых ядер.
Поверхностные вены выпуклых поверхностей мозга в зависимости от направления подразделяются на восходящие и нисходящие. Восходящие вены впадают в верхний продольный синус. Сюда относится группа лобных вен, вен центральных извилин и вен теменно-затылочной области. К нисходящим относятся вены, впадающие в поперечный и верхний каменистый синусы, они собирают венозную кровь от височных и затылочных долей. Та и другая группа отделены друг от друга средней мозговой веной, идущей почти горизонтально по ходу сильвиевой борозды. В среднюю мозговую вену впадают веточки, несущие кровь из прилегающих отделов лобной, теменной и височной долей и островка Рейля. Средняя мозговая вена впадает в те-менно-основной, пещеристый или, реже, в нижний каменистый синус. Задний конец средней мозговой вены часто соединяется с одной из центральных или теменных вен: этим самым устанавливается связь между сагиттальным и теменно-основным синусами. Такая вена носит название вены Троларда. Центральная, или теменная, вена может иметь связь с одной из крупных височных вен. При этом варианте (вена Лаббэ) имеется связь между верхним продольным и поперечным синусами. Вены внутренней поверхности полушария также впадают в верхний продольный синус, причем каждой из них соответствует симметрично впадающая в синус вена с наружной поверхности мозга.
По нижней поверхности мозга вены идут в разных направлениях. Большая часть веточек с базальной поверхности височных и задней части лобных долей вливается в срединно-базальную вену, впадающую в поперечный или верхний каменистый синус.
Глубокие вены мозга соединяются во внутренние венозные стволы, которые несут кровь в вену Галсна, впадающую в прямой синус.
ЛУЧЕВАЯ АНАТОМИЯ ГОЛОВНОГО МОЗГА
Глава 1
ЛУЧЕВАЯ АНАТОМИЯ ГОЛОВНОГО МОЗГА
В те времена, когда медицина базировалась преимущественно на результатах физикального обследования человека, наименее доступным оставался головной мозг, скрытый черепной коробкой. Применениекомпьютерной и магнитно-резонансной томографии совершило переворот в медицине, позволив объективно оценивать состояние вещества головного мозга. Эти методы объединены понятиемнейровизуализации. Их использование позволяет ответить на вопрос: есть ли изменения и где они локализуются, оценить состояние ликворсодержащей системы и прилегающих к патологическому очагутканей и, наконец, определить природу патологического процесса. Ответить на поставленные вопросы невозможно без знания нормальной лучевой анатомии головного мозга. С учетом особенностейморфологии и физиологии головного мозга отдельно описана лучевая анатомия задней черепной ямки и структур, лежащих выше намета мозжечка.
Из лучевых методов диагностики в настоящее время достаточно широко применяются ультразвуковое исследование головного мозга (нейросонография), КТ, МРТ. Эти методы, имея свои достоинства инедостатки, взаимно дополняют друг друга. В отделении лучевой диагностики многопрофильной больницы наиболее целесообразно применение всех вышеперечисленных методик. Решение о выбореметода в каждом конкретном случае принимается коллегиально врачом-клиницистом и врачом лучевой диагностики.
Достоинствами нейросонографии являются доступность, простота применения, возможность использования у постели больного, отсутствие необходимости в специальной предварительной подготовке. Однако результаты нейросонографии существенно зависят от профессионализма исследователя, качества применяемой аппаратуры. Высока степень субъективности оценки получаемых данных. Несмотряна это, УЗИ головного мозга до сих пор является основным методом диагностики у новорожденных и детей раннего возраста.
КТ позволяет выявить изменения, более точно оценить динамику патологического процесса. Из особенностей КТ следует отметить действие ионизирующего излучения на пациента во время исследования, а у детей раннего возраста и у лиц, находящихся в состоянии психомоторного возбуждения — необходимость применения анестезиологического пособия.
М РТ становится все более доступным методом лучевой диагностики, позволяя наиболее полно оценить процессы развития мозга, выявить изменения, провести дифференциальную диагностику и уточнитьдинамику течения заболевания. Это единственный метод, позволяющий наблюдать за процессами миелинизации головного мозга, дифференцировать стадии геморрагического процесса. Однако проведениеМРТ требует специального оборудования для обследования больных, находящихся в реанимации, занимает много времени, в ряде случаев диктует необходимость применения анестезиологическогопособия.
AHATОMO-ФИЗИ0Л0ГИЧЕСКИЕ ОСОБЕННОСТИ МОЗГА НОВОРОЖДЕННОГО
Головной мозг новорожденного относительно велик, его масса не превышает 10% от массы тела, в то время как у взрослого человека она составляет 2—2,5%. Крупные борозды и извилины выражены оченьхорошо, но имеют малую глубину. Мелких борозд мало, они появляются только в первые годы жизни. Размеры лобной доли меньше, чем у взрослых, а затылочной, наоборот, больше. Мозжечок развитслабо, характеризуется малой толщиной, небольшими размерами полушарий и поверхностными бороздами. Боковые желудочки крупные, представляются растянутыми. Твердая мозговая оболочка уноворожденных тонкая, ее наружный листок на большой площади сращен с костями черепа. Венозные пазухи тонкостенные и уже, чем у взрослых. Мягкая и паутинная оболочки мозга тонкие, субдуральное и субарахноидальное пространство узкие. Цистерны, расположенные на основании мозга, напротив, относительно крупные. Водопровод мозга шире, чем у взрослых. К моменту рождениямозг содержит около 88% воды, к 2 годам этот показатель снижается до 82%. Это совпадает с растущей концентрацией липидов. Процесс миелинизации (формирования миелиновой мембраны вокругаксона) к моменту рождения не завершен. Наиболее миелинизированы проводящие пути спинного и продолговатого мозга.
Развитие нервных путей и окончаний идет центростремительно, в цефалокаудальном направлении и поэтапно, в строгом соответствии с биологическим возрастом ребенка. Базаль-ные ганглии составляютгораздо большую часть мозга у недоношенного ребенка, чем у доношенного, и развиваются раньше коры головного мозга и белого вещества.
Ткань субэпендимального терминального матрикса, расположенного первоначально над головкой и телом хвостатого ядра, в основном снабжается кровью артерией Гейбнера (Heubner) с дополнительнымкровоснабжением из конечных ветвей латеральных стриарных и хорио-идных артерий. Артерия Гейбнера и хориоидные артерии имеют особенно большой диаметр у недоношенных. В 80% случаевинтравентрикулярные геморрагии связаны с терминальным матриксом. Субэпендимальный матрикс содержит незрелую сосудистую сеть, которая начиная с 32-й недели гестации преобразуется во вполнеразвитое капиллярное ложе. В это время роль артерии Гейбнера снижается до кровоснабжения маленькой области головки хвостатого ядра.
ЛУЧЕВОЕ ИССЛЕДОВАНИЕ МОЗГА НОВОРОЖДЕННОГО Ультразвуковая анатомия головного мозгановорожденного
Нейросонография, благодаря своей простоте, доступности и качеству получаемого изображения, является оптимальной методикой для выявления структурных изменений головного мозга детей на раннемэтапе обследования.
Как при всяком ультразвуковом исследовании, все видимые структуры головного мозга по эхогенности можно подразделить на гипер-, гипо-, изо- и анэхогенные. Наиболее яркими — гиперэхогенными —выглядят кости черепа. Сосудистые сплетения желудочков также гипер-эхогенны. Особенно хорошо лоцируются сплетения боковых желудочков, которые, распространяясь в теле, височном роге и областитреугольника, при сканировании в сагиттальной плос-
кости формируют «фигуру перстня» (рис. 1.1). При исследовании во фронтальной и аксиальной плоскостях сплетения отчетливо визуализируются в виде ярких линейных структур на фоне анэхогенной —темной — спинномозговой жидкости в желудочках (рис. 1.2). Форма и симметричность сосудистых сплетений имеют большое диагностическое значение. Утолщение одного из них по отношению к другомупозволяет заподозрить внутрижелудочковое кровоизлияние (ВЖК I у доношенных детей). Кисты сосудистых сплетений также являются нередкими находками у новорожденных — 3% по данным T.Riebel (1992).
Червь мозжечка, стенки мозговых артерий определяются как гиперэхогенные образования. Ярким выглядит и рисунок борозд, обусловленный мягкой мозговой оболочкой. Само серое вещество выглядитгипоэхогенным, и яркие борозды контурируют извилины большого мозга, формируя рисунок коры. В виде гипоэхогенных образований представлены полушария мозжечка и стволовые структуры. Подкорковые ядра имеют несколько большую акустическую плотность по сравнению с окружающим белым веществом. При получении срединного изображения в сагиттальной плоскости отчетливовизуализируется гипоэхогенное мозолистое тело, четко отграниченное от серого вещества коры гиперэхогенной поясной бороздой. Здесь же определяются структуры, расположенные строго по среднейлинии: III желудочек, водопровод мозга, IV желудочек. Пространства, заполненные спинномозговой жидкостью, а именно желудочки мозга, большая цистерна, субарахноидальные пространства поконвекситальной поверхности мозга, видны как анэхогенные образования. Исключением являются цистерны основания мозга, которые при сканировании в аксиальной плоскости формируют типичныйгиперэхогенный рисунок. Эти пространства, содержащие спинномозговую жидкость, становятся гиперэхогенными вслед-
Рис. 1.1. Нейросонография. Изображения головного мозга в сагиттальной плоскости: а — срединно-сагиттальный срез; б — парасагиттальный срез через тела боковых желудочков.
I — поясная борозда; 2 — мозолистое тело; 3 — межжелудочковое отверстие; 4 — сосудистое сплетение нижнего рога; 5 — клубок сосудистого сплетения; 6 — III желудочек; 7 — височная доля; 8 — лобная доля; 9 — теменная доля; 10 —инфундибулярный карман; 11 — водопровод среднего мозга; 12 — четверохол-мная цистерна; 13 — IV желудочек; 14 — мозжечок; 15 — межталамическая спайка.
Рис. 1.2. Нейросонография. Изображения головного мозга в корональной плоскости: а — через передние рога боковых желудочков; б — через структуры задней черепной ямки.
1 — передний рог бокового желудочка; 2 — мозолистое тело; 3 — латеральная щель мозга; 4 — островок; 5 — лобная доля; 6 — височная доля; 7 — чешуя височной кости; 8 — III желудочек; 9 — цистерна промежуточного паруса; 10 —четверохолмная цистерна; 11 — охватывающая цистерна; 12 — намет мозжечка; 13 — червь мозжечка; 14 — полушария мозжечка; 15 — затылочная кость.
ствие пульсации расположенных в них артерий артериальный круг большого мозга. При этом значительно улучшается визуализация гипоэхогенных структур среднего мозга — пластины четверохолмия, ножек мозга, водопровода, который представлен двумя тонкими короткими полосками, параллельными друг другу.
Рисунок базальных цистерн формирует расположенная над одноименной пластиной четверохолмная цистерна, которая сзади ограничена верхними отделами червя мозжечка, а по бокам — краями вырезкинамета мозжечка. Огибая с обеих сторон средний мозг, она переходит в охватывающую цистерну, которая располагается между латеральными краями среднего мозга и пара-гиппокампальными извилинами, сливаясь затем между ножками мозга в межножковую цистерну. В передней части межножковой цистерны расположена изоэхогенная мозгу воронка гипофиза с рисунком инфундибулярного кармана III желудочка в виде двух тонких гиперэхогенных полосок с анэхогенным промежутком между ними, который соответствует изображению спинномозговой жидкости III желудочка. Кпереди от межножковойцистерны располагается перекрест зрительных нервов, также окруженный ликвором супраселлярной цистерны. Цистерна латеральной щели отделяет задние отделы лобной доли от передних отделоввисочной доли.
Ультразвуковое исследование проводится в режиме реального времени и позволяет визуализировать пульсирующие сосуды головного мозга. При сканировании в аксиальной плоскости в областиохватывающей цистерны можно увидеть заднюю мозговую артерию, латеральнее воронки гипофиза отмечаются поперечные сечения внутренних сонных артерий, между ножками мозга — поперечникбазилярной артерии (БА). При сканировании во фронтальной плоскости
в проекции латеральных щелей мозга отчетливо визуализируются пульсирующие средние мозговые артерии, а в передних отделах межполушарной щели — передние мозговые артерии.
Следует отметить, что при чрезродничковом сканировании у детей первого месяца жизни перивентрикулярное белое вещество в проекции треугольников боковых желудочков может выглядетьгиперэхогенным. Это изображение в литературе носит название перивентрикулярного «halo» [Grant E., 1983], или околотреугольникового «blush» [Di Pietro M.A., 1986]. Эти феномены пытаются объяснитьбольшим содержанием макромолекул воды в мозге новорожденного из-за незавершенного процесса миелинизации, а также возможными артефактами отражения ультразвукового луча от сосудистыхсплетений, расположенных в треугольниках боковых желудочков. Данное изображение следует дифференцировать от гипоксически-ишемического поражения белого вещества — перивентрикулярнойлейкомаляции, которое на раннем этапе характеризуется гиперэхогенными зонами, чаще всего в районе передних рогов и треугольников боковых желудочков. Ведущую роль при этом играетневрологическая симптоматика.
При нейросонографии обязательно измеряют ширину внутренних ликворсодержащих пространств. Чаще всего в практической деятельности пользуются схемой измерений, которая была предложенаM.S.Leven (1985). Измерения осуществляются при сканировании во фронтальной плоскости на уровне отверстий Монро. Здесь измеряют ширину боковых желудочков — как расстояние от средней линиидо самой латеральной точки желудочка (13 мм), косой размер — как дистанцию между самой выпуклой и самой вогнутой точками передних рогов (2—3 мм), и ширину III желудочка (до 5 мм). Допускаетсянезначительная (в пределах 2 мм) асимметрия боковых желудочков. Между передними рогами может лоцироваться полость прозрачной перегородки (cavum septi pellucidi), ширина которой у доношенногоребенка не должна превышать 2 мм. У недоношенных детей она, как правило, шире и требует мониторирования, так как в случае ее роста, из-за сдавливания отверстий Монро, может развитьсябивентрикулярная гидроцефалия.
Картина мозга новорожденного при КТ и МРТ значительно отличается от картины мозга детей других возрастных периодов и взрослых.
КТ-анатомия мозга новорожденного
Поскольку мозг новорожденного содержит относительно много воды и мало липидов, то плотность мозговой ткани новорожденного при КТ меньше и повышается с возрастом (табл. 1.1).
Разница в плотности между белым и серым веществом в любом возрасте более 10 HU должна рассматриваться как патология. Большая цистерна мозга у новорожденных имеет значительные размеры исоставляет от 2 мм до 9—10 мм, в зависимости от индивидуальных особенностей. На
Таблица 1.1
Плотность мозговой ткани при компьютерной томографии в различные возрастные
периоды (ед. HU)
Возрастной период | Белоевещество | Белое вещество послевнутривенногоконтрастирования | Сероевещество | Серое вещество послевнутривенногоконтрастирования |
Недоношенные | 16 | — | 28,3 | — |
0-2 года | 26,3 | 28,5 | 32,7 | 36-37 |
2-15 лет | 29,2 | 31 | 35,6 | 38-39 |
обычных компьютерных томограммах, а особенно на постконтрастных изображениях задней черепной ямки, в некоторых случаях хорошо видны лентовидные уплотнения поперечного и сигмовидногосинусов. Величина их индивидуальна у разных детей, встречается асимметрия правой и левой сторон. При значительном расширении венозных коллекторов можно заподозрить сосудистую патологию ирекомендовать проведение ангиографического исследования. Ширина III желудочка составляет 2—4 мм, боковых желудочков — 6 мм. Субарахноидаль-ные щели конвекситальной поверхности мозга шире(около 2 мм), но менее глубоки. Латеральные и межполушарная щели также более широкие и короткие.
МРТ-анатомия головного мозга новорожденного
Различие изображений серого и белого вещества на Т1-ВИ определяется различными временами их релаксации. Серое вещество гиперинтенсивно по сравнению с белым. По мере развития мозгауменьшается количество воды и соответственно — время релаксации серого вещества, оно становится гипоинтенсивным по отношению к белому. Изображение спинномозговой жидкости гипоинтенсивное. На Т2-ВИ изображение мозга противоположно изображению на Т1-ВИ (серое вещество и спинномозговая жидкость гиперинтенсивны).
Миелинизация — это динамический процесс, который начинается с наиболее древних структур. Такие старые в филогенетическом отношении отделы, как ствол мозга, обычно полностью миелинизированык моменту рождения. Кора, напротив, демонстрирует наибольшие изменения в течение первых двух лет жизни, в связи с тем, что часть волокон осталась немиелинизи-рованной в период нормальноговнутриутробного развития.
R.B.Dietrich описал три стадии процесса миелинизации.
1-я стадия — младенческая — от момента рождения до 6-го месяца жизни, характеризуется более интенсивным сигналом от белого вещества головного мозга по сравнению с серым веществом коры. Этовзаимоотношение является обратным изображению мозга у взрослых.
2-я стадия — от 8-го до 12-го месяца — является переходной, интенсивность сигнала от белого и серого вещества практически одинакова.
В 3-й — взрослой стадии — выделяют раннюю взрослую. Она длится от 10-го до 31 -го месяца жизни, и в этот период миелинизация представляется в основном завершенной, за исключением областисемиовальных центров.
K.Flechsig в 1920 г. предположил, что процесс миелинизации осуществляется в определенной последовательности, в зависимости от функции соответствующих отделов белого вещества. Начинается он счувствительных или афферентных путей, затем переходит на эфферентные пути, распространяясь от коры к подкорковым зонам. Заканчивается процесс миелинизацией ассоциативного пути.
Процесс распространяется с каудального в краниальном и с дорсального в вентральном направлении таким образом, что затылочные зоны миелинизируются раньше, чем лобные, а ствол мозга — раньше, чем полушария.
В первую очередь созревают основные чувствительные пути. Если к моменту рождения в продолговатом мозге, дорсальных отделах среднего мозга и мозжечке наблюдаются незначительные признакимиелинизации, то к 3 месяцам мозжечок уже имеет характерное для взрослого изображение, хотя процесс созревания в его полушариях еще продолжается. Появление признаков миелинизации в заднейчасти внутренней капсулы и уменьшение интенсивности сигнала вокруг нее может быть расценено как завершение процесса в этой зоне. Вслед за этим в течение 2— 3 месяцев появляются признакизрелости передних отделов внутренней капсулы. Больший-
ство описанных изменений визуализируются на Т1-ВИ. На Т2-ВИ интенсивность сигнала (ИС) от большинства глубоко идущих проводящих путей снижается в возрасте 6— 12 месяцев, при этом процесссозревания продолжается в направлении от задних отделов мозга к передним.
Оценивая структуры внутренней капсулы, можно сказать, что заднее бедро созревает к 10-му, а переднее — к 11-му месяцам жизни. Мозолистое тело также созревает в направлении от задних отделов мозгак передним. Очевидные признаки миелинизации задних отделов видны к 6-му месяцу, а колена — к 8-му месяцу жизни.
В семиовальных центрах отмечаются наиболее отсроченные изменения ИС, что может быть обнаружено в течение первого и второго десятилетий жизни. Эта зона характеризуется большим количествомнейронов, вовлеченных в ассоциативный путь. Она может сохранять высокую интенсивность сигнала и в 20 лет, что должно быть расценено как норма, а не патологический демиелинизирующий процесс. Воценке развития белого вещества головного мозга наиболее значимыми являются изменения, которые происходят в течение первых двух лет жизни, позже — с 3 до 20 лет — отслеживается лишьнезначительная динамика.
С точки зрения химического процесса созревание белого вещества заключается в том, что аксоны накапливают холестерол и гликолипиды в своей нейрональной оболочке. Эта оболочка, защищеннаяолигодендроцитами, крайне гидрофильна и связывает свободную воду. Количество молекул свободной воды уменьшается, изменяется время релаксации и уменьшается интенсивность сигнала на Т1- и Т2-ВИ.
Подводя итог вышесказанному, следует еще раз уточнить, что от момента рождения до 4— 6-го месяцев жизни ИС от белого вещества является обратной той, которая типична для головного мозгавзрослых. После переходной изоинтенсивной стадии определяется сначала ранняя взрослая стадия изображения головного мозга, и лишь за ней — взрослая модель.
У доношенных младенцев задний край внутренней капсулы, центральная часть лучистого венца и ножки мозга миелинизированы уже при рождении. Созревание семиовальных центров продолжается внаправлении от задних отделов мозга к передним. Мозолистое тело и передний лимб внутренней капсулы не миелинизированы у нормального младенца при рождении. В этих структурах можно проследитьпроцесс созревания.
Ствол мозга и центральные ядра миелинизируются раньше, чем кора (т. е. лобные, височные, теменные и затылочные доли). Субкортикальные отделы белого вещества созревают позже. Очевидныепризнаки миелинизации затылочной области отмечаются между 9-м и 12-м месяцами жизни, а лобной — между 11-ми 12-м. В основном этот процесс завершается к 2 годам.
ЛУЧЕВАЯ АНАТОМИЯ СТРУКТУР ЗАДНЕЙ ЧЕРЕПНОЙ ЯМКИ
Задняя черепная ямка представляет собой часть основания черепа, ограниченную центрально спереди спинкой турецкого седла и скатом, в переднебоковых отделах — пирамидами височных костей, снизу— базальной частью затылочной кости, по заднелатеральным поверхностям — ее чешуей. Она сообщается через большое затылочное отверстие с просветом позвоночного канала.
Следует отметить, что в настоящее время оптимальным методом исследования структур задней черепной ямки является МРТ, которая, в отличие от КТ, лишена артефактов от костных структур.
Для удобства анализа на КТ- и МР-изображениях принято выделять несколько уровней получения изображений.
На КТ-срезе, выполненном по верхнему краю большого затылочного отверстия, дифференцируются продолговатый мозг, оболочки мозга, ликворсодержащие пространства, сосудистые структуры (рис. 1.3). Иногда можно видеть расположенные латерально нижние полюса миндалин мозжечка (рис. 1.4).
Мозжечок заполняет практически весь объем задней черепной ямки. Его поперечный размер (90— 100 мм) значительно превышает переднезадний (до 50 мм). Спереди мозжечок прилежит к продолговатомумозгу, мосту и четверохолмию и соединен с ними посредством трех пар ножек. Верхняя пара ножек идет к четверохолмию, средняя — к мосту, нижняя — к продолговатому мозгу. Выявление зонпатологической плотности (сигнала) в этих отделах позволяет говорить о возможном поражении той или иной ножки. Поскольку ножки мозжечка представлены белым веществом, они легкодифференцируются на фоне более плотной коры мозжечка. Мозжечок состоит из двух гемисфер, между которыми располагается червь, который хорошо визуализируется на КТ- и МРТ-срезах благодаряхарактерным коротким, идущим во фронтальной плоскости параллельно друг другу извилинам. Более того, червь мозжечка имеет относительно большую плотность, чем гемисферы. Червь идет косо снизусзади вверх и вперед, что позволяет анализировать состояние его нижних и верхних отделов. Нижние отделы мозжечка вентрально прилежат к про-
Рис. 1.3. Уровень большого затылочного отверстия: а — аксиальный срез КТ; б — аксиальный срез МРТ (Т1-ВИ); в — аксиальный срез МРТ (Т2-ВИ).
1 — сошник; 2 — затылочная кость; 3 — продолговатый мозг; 4 — мозжечок; 5 — верхнечелюстная пазуха; 6 — большая цистерна; 7 — головка нижней челюсти; 8 — сосцевидный отросток; 9 — позвоночная артерия; 10 — носоглотка; 11 —височная кость (пирамида).
Рис. 1.4. Уровень над большим затылочным отверстием: а — аксиальный срез КТ; б — аксиальный срез МРТ (Т1-ВИ); в — аксиальный срез МРТ (Т2-ВИ).
1 — височная доля; 2 — скат; 3 — продолговатый мозг; 4 — полушарие мозжечка; 5 — бази-лярная артерия; 6 — миндалина мозжечка; 7 — основная пазуха; 8 — височная кость; 9 — вал-лекула; 10 — большая цистерна.
долговатому мозгу, расположенному на нижних отделах ската. Его размеры в продольном направлении составляют до 30 мм, в поперечном — до 20 мм. Он имеет округлую форму и срединную щель попередней и задней поверхности. На 2 см выше начинает визуализироваться мост, впереди которого проходит отчетливо различаемая на фоне передней цистерны моста БА (рис. 1.5). По бокам от моставизуализируются вершины и задние поверхности пирамид височных костей, отделенные от последнего мостомозжечковыми цистернами. На срезах изображение моста напоминает квадрат с закругленнымиуглами. Между стволом мозга спереди и мозжечком сзади расположен непарный IV желудочек. На аксиальных КТ- и МРТ-срезах он локализуется строго центрально, имеет полулунную форму. Его боковыекарманы в норме должны быть строго симметричны (рис. 1.6). Отсутствие изображения IV желудочка, его смещение, деформация, шаровидная форма являются косвенными признаками патологическогопроцесса и требуют дообследования. Размеры IV желудочка достаточно вариабельны и не играют существенной роли в отнесении наблюдений по этому признаку к норме или патологии. IV желудочексообщается посредством водопровода мозга с III желудочком. В норме водопровод не визуализируется. Существует три отверстия, соединяющие IV желудочек с подпаутинным пространством — ере-
Рис. 1.5. Уровень четвертого желудочка:
а — аксиальный срез КТ; б — аксиальный срез МРТ (Т1-ВИ); в — аксиальный срез МРТ (Т2-ВИ).
1 — серп мозга; 2 — лобная доля; 3 — латеральная щель; 4 — височный рог бокового желудочка; 5 — мост; 6 — четвертый желудочек; 7 — червь мозжечка; 8 — верхняя лунная долька; 9 — орбита; 10 — клиновидная пазуха; 11 — мосто-мозжечковая цистерна; 12 — средние ножки мозжечка; 13 — межполушарная щель; 14 — ба-зилярная артерия; 15 — глазное яблоко; 16 — височная доля; 17 — полушарие мозжечка; 18 — глазное яблоко.
динное и два латеральных, расположенных в боковых карманах (рис. 1.7.). Эти отверстия не удается дифференцировать ни в норме, ни при патологических процессах в головном мозге.
Следует остановиться на анатомии подпаутинных пространств задней черепной ямки (рис. 1.8). Выделяют большую цистерну мозга (церебелломедуллярную цистерну). Она представляет собойпространство между продолговатым мозгом, дном IV желудочка и нижней поверхностью мозжечка. Ее ширина приближается к 30 мм, а переднезадний размер составляет 20 мм. Между основанием черепаи нижней поверхностью мозга от большого затылочного отверстия вдоль ската и спинки турецкого седла простирается задняя базальная цистерна. В зависимости от расположенных рядом анатомическихструктур выделяют медиальную, которая проходит между скатом и мостом (ширина до 10 мм), а в мостомозжечковых углах лежат парные латеральные (боковые) церебеллопонтийные цистерны. С нимисвязаны боковые карманы IV желудочка посредством боковых отверстий (Люшка). Верхняя порция задней базальной цистерны формирует межножковую цистерну, которая обязательно должнапрослеживаться на соответствующем срезе и располагаться строго срединно. Кнаружи от ножек мозга лежит охватывающая цистерна, формирующая ликворсодержащее пространство в пределахтенториальной
Рис. 1.6. Уровень над четвертым желудочком:
а — аксиальный срез КТ; б — аксиальный срез МРТ
(Т1-ВИ); в — аксиальный срез МРТ (Т2-ВИ).
1 — лобная доля; 2 — лобный рог бокового желудочка; 3 — латеральная щель мозга; 4 — третий желудочек; 5 — ножка мозга; 6 — цистерна четверохолмия; 7 — височная доля; 8 — верхний сагиттальный синус; 9 — серп мозга; 10 — головкахвостатого ядра; 11 — кора островка; 12 — скорлупа; 13 — внутренняя вена мозга; 14 — четверохолмие; 15 — полушарие мозжечка; 16 — зрительный нерв; 17 — височный рог бокового желудочка; 18 — гиппокамп; 19 — передняя долькамозжечка; 20 — хиазма; 21 — внутренняя сонная артерия; 22 — охватывающая цистерна; 23 — четвертый желудочек; 24 — прямая извилина; 25 — ольфакторная борозда; 26 — средняя мозговая артерия; 27 — червь; 28 — затылочная доля; 29 —клетчатка орбиты; 30 — передняя мозговая артерия; 31 — межножковая цистерна.
вырезки (рис. 1.9). Она сообщается с межножковой цистерной, охватывает боковые поверхности ножек мозга и продолжается кзади в четверохолмную цистерну, а выше связана с перикал-лозной и парноймежгемисферной цистернами.
Между наметом и передней поверхностью мозжечка находится верхняя мозжечковая цистерна. От затылочных долей большого мозга мозжечок отделен отростком твердой мозговой оболочки, которая даетна КТ-срезах характерную гиперденсивную тень, простирающуюся от верхних граней пирамид височных костей кверху и кнутри, повторяя форму палатки, и завершается тенториальной вырезкой, черезкоторую проходит ствол мозга. Наличие в этой области ликворопроводящих путей позволяет уверенно оценивать ее состояние, что играет важную роль в диагностике дислокаций. На КТ-срезах сверху мостграничит со средним моз-
Рис. 1.7. Уровень позади боковых желудочков. Коронарные МРТ-срезы: а — Т1-взвешенное изображение; б — Т2-взвешенное изображение.
1 — серп; 2 — предклинье; 3 — перикаллезная цистерна; 4 — намет мозжечка; 5 — верхняя теменная долька; 6 — угловая извилина; 7 — межтеменная борозда; 8 — затылочный рог; 9 — теменно-затылочная щель; 10 — язычная извилина; 11 —верхняя полулунная долька; 12 — горизонтальная щель; 13 — передняя доля мозжечка.
Рис. 1.8. Срединный сагиттальный срез МРТ: а — Т1-взвешенное изображение; б — Т2-взвешенное изображение.
1 — колено мозолистого тела; 2 — свод; 3 — воронка; 4 — мост; 5 — водопровод мозга; 6 — четверохолмие; 7 — продолговатый мозг; 8 — спинной мозг; 9 — поясная извилина; 10 — мозолистое тело; 11 — валик мозолистого тела; 12 —межножковая цистерна; 13 — четвертый желудочек; 14 — большая цистерна; 15 — поясная борозда; 16 — перикаллезная цистерна; 17 — боковой желудочек; 18 — передняя мозговая артерия; 19 — базилярная артерия; 20 — парацентральнаядолька; 21 — предклинье; 22 — клин; 23 — цистерна большой вены мозга; 24 — прямой синус; 25 — миндалина мозжечка.
Рис. 1.9. Уровень отверстия мозжечкового намета: а — аксиальный срез КТ после контрастирования; б — аксиальный срез МРТ (Т1-ВИ); в — аксиальный срез МРТ (Т2-ВИ).
1 — серп; 2 — мозолистое тело; 3 — лобный рог; 4 — столбы свода; 5 — третий желудочек; 6 — шишковидная железа; 7 — цистерна четверохолмия; 8 — контрастированный намет мозжечка; 9 — верхняя лобная извилина; 10 — хвостатое ядро; 11 — прозрачная перегородка; 12 — поводок; 13 — червь; 14 — колено мозолистого тела; 15 — скорлупа; 16 — верхняя височная извилина; 17 — свод; 18 — край намета; 19 — средняя лобная извилина; 20 — нижняя лобная извилина; 21 — кораостровка; 22 — полость прозрачной перегородки; 23 — наружная затылочная извилина; 24 — средняя мозговая артерия; 25 — четверохолмие; 26 — поясная борозда; 27 — головка хвостатого ядра; 28 — бледный шар; 29 — височный рог боковогожелудочка.
гом, а именно с четверохолмием. Задний контур нижних холмиков в виде изломанной линии, подчеркнутой четверохолмной цистерной, позволяет уверенно дифференцировать эту зону. Чуть выше икпереди от четверохолмия располагаются ножки мозга в виде двух расходящихся коротких, достаточно толстых продолговатых образований, между которыми проходит меж-ножковая цистерна, имеющаятреугольную форму с вершиной, обращенной кзади.
ЛУЧЕВАЯ АНАТОМИЯ СУПРАТЕНТОРИАЛЬНЫХ ОТДЕЛОВ ГОЛОВНОГО МОЗГА
В латеральных отделах дно передней черепной ямки образовано крышами глазниц, а в центральном — продырявленной пластинкой. Базальные отделы лобных долей представлены короткими, идущимипродольно глазничными извилинами. На более высоких срезах удается диф-
Рис. 1.10. Уровень третьего желудочка: а — аксиальный срез КТ; б — аксиальный срез МРТ (Т1-ВИ); в — аксиальный срез МРТ (Т2-ВИ).
1 — серп мозга; 2 — верхняя лобная извилина; 3 —
средняя лобная извилина; 4 — нижняя лобная извилина; 5 — головка хвостатого ядра; 6 — внутренняя капсула; 7 — наружная капсула; 8 — третий желудочек; 9 — четверохолмие; 10 — межполушарная щель; 11 — лобный рог боковогожелудочка; 12 — кора островка; 13 — латеральная щель; 14 — цистерна терминальной пластинки; 15 — полушарие мозжечка; 16 — верхняя полулунная долька; 17 — лобная доля; 18 — поясная извилина; 19 — межжелудочковое отверстие; 20 —таламус; 21 — шишковидная железа; 22 — зрительная лучистость; 23 — затылочная доля; 24 — треугольник бокового желудочка; 25 — лобный рог; 26 — внутренняя капсула; 27 — передняя мозговая артерия; 28 — валик мозолистого тела; 29 —хвостатое ядро; 30 — прозрачная перегородка; 31 — верхняя височная извилина; 32 — теменно-затылочная борозда; 33 — шпорная борозда.
Рис. 1.11. Уровень третьего желудочка.
Коронарные МРТ-срезы:
а — Т1-взвешенное изображение;
б — Т2-взвешенное изображение,
в — Т1-взвешенное изображение на уровне
турецкого седла.
1 — мозолистое тело; 2 — боковой желудочек; 3 — третий желудочек; 4 — хиазмальная цистерна; 5 — свод; 6 — хвостатое ядро; 7 — внутренняя капсула; 8 — латеральная щель; 9 — серп; 10 — парагиппо-кампальная извилина; 11 — пояснаяизвилина; 12 — перикаллезная цистерна; 13 — воронка; 14 — основная пазуха; 15 — скорлупа; 16 — наружная капсула; 17 — кора островка.
ференцировать, особенно у людей пожилого возраста, верхнюю, среднюю и нижнюю лобные извилины (рис. 1.10). Структуры средней черепной ямки ограничены спереди малым крылом основной кости, снизу — большим крылом, сзади — передней поверхностью пирамиды височной кости. На тонких срезах (толщина среза 1—2 мм, «edge» или «bone» — алгоритм реконструкции изображения) отчетливодифференцируются округлое, овальное и рваное отверстия. В верхнемедиальной части передней поверхности пирамиды височной кости прослеживается площадка узла тройничного нерва.
Содержимое средней черепной ямки представлено базальными отделами височной доли. Самые нижние срезы в латеральных отделах позволяют оценить нижнюю височную извилину, а в медиальных —парагиппокампальную, расположенную между височным (нижним) рогом бокового желудочка и кавернозным синусом. Височный рог бокового желудочка визуализируется в виде тонкого полумесяца. Кавернозный синус располагается параселлярно в виде гипер-денсивной структуры с плоским, вогнутым или умеренно выбухающим контуром, которая после внутривенного контрастированиядемонстрирует интенсивное и достаточно равномерное на-
Рис. 1.12. Уровень хиазмальной (супраселлярной цистерны): а — аксиальный срез КТ; б — аксиальный срез МРТ (Т2-ВИ).
1 — внутренняя сонная артерия; 2 — миндалевидное тело; 3 — мост; 4 — хиазма; 5 — спинка турецкого седла; 6 — базилярная артерия; 7 — боковая цистерна моста; 8 — передняя мозговая артерия; 9 — средняя мозговаяартерия; 10 — задняя соединительная артерия; 11 — ножка мозга; 12 — четверохолмие; 13 — бугорок турецкого седла; 14 — воронка; 15 — хиазмальная цистерна; 16 — задние мозговые артерии; 17 — межножковаяцистерна; 18 — охватывающая цистерна.
копление контрастирующего вещества. Отдельные структуры параселлярной области (пещеристый синус с внутренней сонной артерией, черепно-мозговые нервы) дифференцировать на КТ-изображениях не удается, для ихоценки используют МРТ (см. рис. 1.6, рис. 1.11). Центральные отделы основания черепа занимает турецкое седло. В полости турецкого седла визуализируется овальной или округлой формы гипофиз (4—6 мм).
Сразу над турецким седлом расположена супраселлярная цистерна в виде правильной формы четырехугольника, а чаще пятиугольника (рис. 1.12). Весьма важной при анализе супраселлярной цистерны является оценкасимметричности изображения ее крыльев. Малейшая асимметрия должна быть тщательно зафиксирована в протоколе, так как подобные изменения могут быть манифестацией развивающегося поперечного смещения. Натонких срезах в передних отделах супраселлярной цистерны удается проследить перекрест зрительных нервов. Еще вен-тральнее расположена линейной формы терминальная цистерна, ориентированная в передне-заднемнаправлении по срединной сагиттальной линии.
В верхнецентральных отделах супраселлярного региона часто удается проследить изображение гипоталамуса, имеющего вид двух треугольников, основаниями ориентированных кпереди. На этом уровне начинаютпрослеживаться нижние отделы III желудочка. Описанные выше ликворсодержащие структуры называют срединными. К ним также относят серповидный отросток твердой мозговой оболочки, прозрачную перегородку, эпифиз. III желудочек наиболее удачно представлен на следующем срезе (см. рис. 1.10). Его стенки должны быть расположены параллельно относительно друг друга, допускается их легкое выбухание или вогнутость, ноширина в норме не превышает 4 мм для обследуемых любого возраста. Впереди III желудочка в виде симметричных дугообразно изогнутых ликворсодержащих структур про-
Рис. 1.13. Уровень нижних отделов боковых
желудочков: а — аксиальный срез КТ после
контрастирования; б — аксиальный срез МРТ
(Т1-ВИ); в — аксиальный срез МРТ (Т2-ВИ).
1 — серп; 2 — верхняя лобная извилина; 3 — средняя лобная извилина; 4 — передняя мозговая артерия; 5 — латеральная щель; 6 — таламус; 7 — треугольник бокового желудочка; 8 — червь; 9 — поясная борозда; 10 — нижняя лобная извилина; 11 — верхняя височная извилина; 12 — шишковидная железа; 13 — цистерна четверохолмия; 14 — прямой синус; 15—лобный рог; 16 —головка хвостатого ядра; 17 —передний отдел латеральной щели; 18 — внутренняя капсула; 19 — боковойотдел латеральной щели; 20 — валик мозолистого тела; 21 — теменно-затылочная борозда; 22 — шпорная борозда; 23 — поясная извилина; 24 — предцентральная извилина; 25 — центральная борозда; 26 — постцентральная извилина; 27—средняя височная извилина; 28 — затылочная доля; 29 — внутренняя вена мозга; 30 — затылочный рог; 31 — поперечная височная извилина (извилина Гешле); 32 — наружная затылочная извилина; 33 — шпорная извилина; 34 — мозолистое тело.
слеживаются передние рога боковых желудочков, разделенные прозрачной перегородкой. В норме дистальные отделы передних рогов остроконечные. Это весьма важно в практическом отношении, так какразвитие гидроцефалии ведет в первую очередь к баллонообразной деформации передних рогов боковых желудочков.
Рис. 1.14. Уровень тел боковых желудочков:
а — аксиальный срез КТ; б — аксиальный срез МРТ (Т1-ВИ); в — аксиальный срез МРТ (Т2-ВИ).
1 — серп; 2 — мозолистое тело; 3 — тело бокового желудочка; 4 — верхний сагиттальный синус; 5 — верхняя лобная извилина; 6 — средняя лобная извилина; 7 — предцентральная извилина; 8 — постцентральная извилина; 9 — надкраеваяизвилина; 10 — угловая извилина; 11 — поясная извилина; 12 — мозолистое тело (колено); 13 — хвостатое тело; 14 — валик мозолистого тела; 15 — теменно-затылочная борозда; 16 — центральная борозда; 17 — латеральная щель; 18 —полуовальный центр; 19 — затылочная доля.
По латеральному контуру каждого рога отчетливо дифференцируется более плотное анатомическое образование — головка хвостатого ядра, латеральнее и чуть дорсальнее которой проходит линейнойформы переднее бедро внутренней капсулы, идущее косо. Приближаясь к III желудочку, внутренняя капсула меняет направление хода, образуя при этом колено, и идет латерально кзади. Эта частьвнутренней капсулы называется задним бедром. Оно разделяет зрительный бугор и лентикулярные ядра, которые имеют треугольную форму. Позади зрительного бугра идет ретроталамическая цистерна, ориентированная во фронтальной плоскости.
Центральное место в этом регионе занимает ретропинеальная цистерна с шишковидной железой, также относящаяся к срединным структурам головного мозга и располагающаяся позади III желудочка (рис. 1.13). Она имеет округлую форму, размеры не превышают 10 мм в диаметре. В передних отделах прослеживаются поводки, идущие в сагиттальной плоскости. Именно с них начинается обызвествлениешишковидной железы. Латеральные отделы головного мозга на этом уровне представлены островком височной доли, который легко распознается благодаря обилию субарахноидальных пространств, отражающих короткие извитые бо-
Рис. 1.15. Уровень лобных рогов боковых желудочков. Коронарные МРТ-срезы: а — Т1-взвешенное изображение; б — Т2-взвешенное изображение.
1 — межполушарная щель; 2 — поясная борозда; 3 — лобный рог; 4 — прозрачная перегородка; 5 — кора островка; 6 — верхняя лобная извилина; 7 — средняя лобная извилина; 8 — центральная борозда; 9 — мозолистое тело; 10 — хвостатоеядро; 11 — латеральная щель; 12 — внутренняя сонная артерия; 13 — внутренняя капсула; 14 — хиазма.
Рис. 1.16. Уровень задних отделов тел боковых желудочков. Коронарные МРТ-срезы: а — Tl-взвешенное
изображение; б — Т2-взвешенное изображение.
1 — верхняя теменная долька; 2 — поясная борозда; 3 — цистерна большой вены мозга (вены Галена); 4 — четвертый желудочек; 5 — предцентральная извилина; 6 — центральная борозда; 7 — постцентральная извилина; 8 — надкраеваяизвилина; 9 — поясная извилина; 10 — латеральная щель; 11 — верхняя височная извилина; 12 — нижняя височная извилина; 13 — намет мозжечка; 14 — зубчатое ядро; 15 — спинной мозг; 16 — треугольник бокового желудочка; 17 —миндалина мозжечка.
Рис. 1.17. Уровень верхних отделов боковых
желудочков:
а — аксиальный срез КТ;
б — аксиальный срез МРТ (Т1-ВИ);
в — аксиальный срез МРТ (Т2-ВИ).
1 — серп; 2 — мозолистое тело; 3 — боковой желудочек; 4 — перивентрикулярные отделы белого вещества; 5 — клин; 6 — верхняя лобная извилина; 7 — средняя лобная извилина; 8 — предцент-ральная извилина; 9 —центральная борозда; 10 — постцентральная извилина; 11 — латеральная щель; 12 — надкраевая извилина; 13 — угловая извилина; 14 — поясная борозда; 15 — теменно-за-тылочная борозда; 16 — межтеменные борозды.
розды, присущие этой анатомической структуре. Над наметом мозжечка расположены затылочные доли, разделенные задней частью серповидного отростка твердой мозговой оболочки. Отдельныеизвилины затылочных долей не принято выделять, но по медиальной поверхности они короткие и характеризуются поперечным ходом.
Впереди затылочных долей располагается утолщение мозолистого тела с большими и малыми щипцами, латеральнее — задние рога тел боковых желудочков, на фоне которых обычно хорошопрослеживаются сосудистые сплетения. На следующем срезе представлены тела боковых желудочков, разделенные мозолистым телом, которое в переднем отделе образует колено (рис. 1.14). Абсолютные иотносительные размеры боковых желудочков в практической работе рассчитываются достаточно редко, как правило, вполне достаточна приблизительная оценка их размеров, конфигурации исимметричности (рис. 1.15, 1.16). Для оценки желудочковой системы разработаны специальные планиметрические критерии.
Параллельно латеральному контуру каждого бокового желудочка прослеживается более плотная, по сравнению с белым веществом перивентрикулярной области, линейная структура, обусловленная теломхвостатого ядра. На этом и на следующем уровне (рис. 1.17) удается
Рис. 1.18. Уровень перед боковыми желудочками. Коронарные МРТ-срезы: а — Т1-взвешенное изображение; б — Т2-взвешенное изображение.
1 — лобная кость; 2 — поясная извилина; 3 — верхняя лобная извилина; 4 — средняя лобная извилина; 5 — нижняя лобная извилина; 6 — зрительный нерв; 7 — решетчатый лабиринт; 8 — серп; 9 — лобный рог; 10 — ольфакторная борозда.
Рис. 1.19. Уровень тела бокового желудочка. Сагиттальные срезы МРТ: а — Т1-взвешенное изображение; б — Т2-взвешенное изображение.
1 — верхняя лобная извилина; 2 — хвостатое ядро; 3 — латеральная щель; 4 — глазное яблоко; 5 — пред-центральная борозда; 6 — центральная борозда; 7 — постцентральная извилина; 8 — верхняя теменная долька; 9 — боковой желудочек; 10 — язычная извилина; 11 — парагиппокампальная извилина; 12 — средняя лобная извилина; 13 — боковая цистерна моста; 14 — затылочная доля; 15 — мозжечок.
Рис. 1.20. Уровень бокового отдела орбиты. Сагиттальные срезы МРТ: а — Tl-взвешенное изображение; б — Т2-взвешенное изображение.
1 — средняя лобная извилина; 2 — нижняя лобная извилина; 3 — кора островка; 4 — средняя мозговая артерия; 5 — верхняя височная извилина; 6 — средняя височная извилина; 7 — нижняя височная извилина; 8 —предцентральная извилина; 9 — центральная борозда; 10 — постцентральная извилина; 11 — надкраевая извилина; 12 — угловая извилина; 13 — височный рог; 14 — наружная затылочная извилина; 15 — верхняяполулунная долька; 16 — нижняя полулунная долька; 17 — латеральная щель; 18 — горизонтальная щель; 19 — поперечная височная извилина (Гешле).
отчетливо дифференцировать белое и серое вещество, благодаря существенным различиям в их денситометрических характеристиках (белое вещество — 30—35 HU; серое — 35—45 HU). Существуетдостаточное количество схем, на которых представлена топика отдельных извилин применительно к КТ- и МРТ-срезам (рис. 1.18).
Лобную и височную доли разделяет условная линия, проведенная между наиболее дистальной точкой переднего рога бокового желудочка и костями свода на том же срезе, а также по ходу латеральнойборозды (рис. 1.19,1.20). Височная и затылочная доли могут быть разделены линией, проведенной от наиболее дистальной точки затылочного рога к костям свода черепа. Считается, что граница междузатылочной и теменной долями проходит на уровне тел боковых желудочков, и структуры, расположенные выше, относятся к теменной доле, ниже — к затылочной.
Граница между лобной и теменной долями проходит по центральной борозде, которая обычно достаточно хорошо прослеживается у людей любого возраста. Выше тел боковых желудочков расположенуровень семиовальных центров (рис. 1.21).
Обсуждая вопросы нормальной анатомии головного мозга, необходимо обратить внимание на структуры, в которых может наблюдаться физиологическая кальцификация. К ним относятся дериваты твердоймозговой оболочки — серповидный отросток, намет мозжечка, пара-селлярные и петроклиноидные связки, сосудистые сплетения задних рогов тел боковых желудочков и боковых выворотов IVжелудочка. Очень рано начинает обызвествляться шишковидная железа. При гистологическом исследовании уже у трехлетних детей отмечается отложение солей кальция в толще эпифиза. С возрастом частотаобызвествлений шишковидной железы возрастает, достигая 83—90% у обследуемых старше 30—40 лет. Очень нежное точечное обызвествление может наблюдаться в проекции бледного шара у людейпожилого возраста.
Рис. 1.21. Уровень над боковыми желудочками:
а — аксиальный срез КТ; б — аксиальный срез МРТ (Т1-ВИ); в — аксиальный срез МРТ (Т2-ВИ).
1 — краевая борозда; 2 — верхняя лобная извилина; 3 — средняя лобная извилина; 4 — предцентраль-ная извилина; 5 — центральная борозда; 6 — постцентральная извилина; 7 — латеральная щель; 8 — надкраевая извилина; 9 — угловаяизвилина; 10 — теменно-затылочная борозда; 11 — семиовальные центры.
ЛУЧЕВАЯ АНАТОМИЯ ТУРЕЦКОГО СЕДЛА
Турецкое седло сверху ограничено диафрагмой, а по бокам — пещеристыми пазухами. Над седлом расположена цистерна перекреста зрительных нервов, которая содержит верхнюю часть воронки, зрительные нервы, надклиновидные части сифонов внутренней сонной артерии и артериальный круг большого мозга (виллизиев круг) (см. рис. 1.12).
Форма турецкого седла у новорожденных чашеобразная, с широким входом. Эта форма — кажущаяся, ибо верхняя половина спинки седла еще хрящевая и не видна на обзорном снимке. К. 1-му году спинкаседла окостеневает, но сагиттальный диаметр его остается больше, чем глубина. На 2—3-м году жизни турецкое седло становится круглым и остается таким до предпубер-татного возраста.
С начала полового развития и до климактерического периода турецкое седло приобретает постоянную форму с отчетливыми индивидуальными чертами, что может служить основой для идентификацииличности по ранее выполненным краниограммам при судебно-медицинском исследовании. У большинства взрослых людей турецкое седло имеет слегка удлиненную форму, поскольку переднезадний егоразмер преобладает над глубиной. Сохранение у взрослого человека круглого седла является одним из признаков инфантилизма.
У людей пожилого возраста несколько нарастает переднезадний размер седла за счет истончения (очень легкого) центрального и нижнего отделов спинки вследствие умеренной гиперплазии аденогипофиза.
На форму турецкого седла оказывает влияние и размер клиновидной пазухи: при выраженной ее пневматизации оно становится плоским.
Размеры седла измерялись различными методами, однако внедрение в практику КТ и МРТ остановило совершенствование систем измерения седла по рентгенограммам. Для практических целей площадь иобъем турецкого седла не оценивают, а пользуются определением его сагиттального размера и глубины по боковой краниограмме или по прицельному снимку седла. Для измерения сагиттального размеранаходят максимальное расстояние между наиболее удаленными точками переднего ската и передней поверхности спинки седла. При современных условиях съемки (фокусное расстояние не менее 1 метра) средний размер составляет 10,5—11 мм, максимальный — 14,5—15 мм. При обычной форме седла максимальный сагиттальный размер находится посередине его высоты.
Для измерения глубины турецкого седла требуется построение вспомогательных линий: реконструируют вход в седло, т. е. соединяют бугорок с вершиной спинки, затем проводят линию, касательную к днутурецкого седла и параллельную клиновидному возвышению (planum), из точки касания этой линии вверх восстанавливают перпендикуляр до пересечения с линией входа. Отрезок этого перпендикулярамежду дном седла и его входом соответствует глубине. Средний показатель составляет 8 мм, максимальный — 11 мм.
КТ и МРТ обеспечивают хорошую визуализацию и анализ патологических процессов в области турецкого седла. Относительное взаиморасположение анатомических структур в этой области делаетфронтальную проекцию оптимальной для визуализации (см. рис. 1.11).
Потребность в КТ-цистернографии снизилась с техническим развитием КТ и МРТ. Обычная рентгенография и линейная томография области турецкого седла постепенно уходят в прошлое.
Денситометрические характеристики гипофиза достаточно вариабельны (при нативном исследовании они составляют 24—40 HU, после внутривенного контрастирования не превышают 50 HU). Дифференцировать переднюю и заднюю доли гипофиза иногда бывает достаточно трудно, но в ряде случаев удается, так как последняя имеет более высокую денситомет-рическую плотность, чем передняя. При денситометрии гипофиза необходимо выбирать возможно более центрально расположенные изображения. Это позволяет избежать попадания в зону интереса сосудистых структур (внутренняя соннаяартерия, кавернозные синусы) и избежать гипердиагностики микроаденом гипофиза. Над задней и интермедиарной частями гипофиза расположена его воронка, идущая параллельно спинке турецкого седлавверх к гипоталамусу. Диафрагма турецкого седла достаточно отчетливо прослеживается в сагиттальной плоскости. В норме она может быть плоская, выпуклая и вогнутая, но допустимая девиация непревышает 1—2 мм (см. рис. 1.8).
Размеры гипофиза несколько отличаются от размеров турецкого седла. Нормальная высота гипофиза составляет 3—8 мм, а ширина — 10—17 мм. Верхняя поверхность его обычно плоская или нескольковогнутая, реже выпуклая. Выпуклая поверхность гипофиза чаще встречается у женщин молодого возраста.
АНАТОМИЯ СОСУДОВ ГОЛОВНОГО МОЗГА И ИХ ИЗОБРАЖЕНИЕ ПРИ ЛУЧЕВЫХ ИССЛЕДОВАНИЯХ
Артерии головного мозга
Кровоснабжение головного мозга осуществляется через две сонные и две позвоночные артерии. Располагаясь в толще шеи, эти сосуды достигают основания черепа и проникают в его полость, образуя наосновании мозга замкнутое артериальное кольцо.
С анатомической и клинико-рентгенологической точки зрения целесообразно выделять экстра- и интракраниальные отделы артерий.
Мы разберем «классический» вариант строения, а затем остановимся на ряде основных анатомических вариантов, учитывая, что морфологическая организация сосудов головного мозга более чем в 50% случаев отличается от того типа, который принято считать нормальным: отдельные артерии иногда отсутствуют или бывают резко гипоплазированы, отмечаются особенности их отхождения, ветвления ианастомозирования, присутствие дополнительных и пер-систирующих сосудов. Это играет важную роль, поскольку от особенностей строения артериальной системы головного мозга во многом зависит, разовьется ли в создавшихся патологических условиях поражение мозга, какова будет его степень, локализация и клиническая симптоматика.
I. Экстракраниальные артерии
К экстракраниальным артериям относятся все сосуды и сосудистые сегменты, несущие кровь в направлении к голове между сердцем и основанием черепа. Хотя надо отметить, что при ряде патологическихсостояний эти артерии могут менять направление потока и включаться в кровоснабжение верхней конечности. Экстракраниальные артерии включают в себя: дугу аорты до отхождения левой подключичнойартерии, общую сонную артерию, плечего-ловной ствол, проксимальные отделы подключичных артерий до отхождения позвоночных артерий, общую сонную артерию, внутреннюю сонную артерию ипозвоночную артерию до вхождения их в полость черепа.
/. Каротидная система.
Плечеголовной ствол (truncus brachiocephalicus) — непарная артерия, отходящая от дуги аорты и направляющаяся косо вправо и вверх. Кпереди от него располагается левая безымянная вена, вилочковаяжелеза, сзади — трахея. Плечеголовной ствол не дает ветвей и на уровне правого гру-дино-ключичного сочленения делится на правую общую сонную и подключичную артерии. В некоторых случаях отнего отходит еще третья ветвь — срединная артерия щитовидной железы, которая идет кверху по передней поверхности трахеи к нижнему полюсу щитовидной железы.
Общая сонная артерия (a. carotis communis) (OCA) справа отходит от плечеголовного ствола. Левая общая сонная артерия отходит от дуги аорты в самой высокой ее точке — у места отхождениябрахиоцефального ствола. Обе артерии переходят на область шеи позади грудино-ключичного сочленения между ножками грудино-ключично-сосцевидной мышцы. ОСА проходят латеральнее трахеи игортани, кзади и медиальнее от яремных вен. Внутренняя яремная вена, ОСА и блуждающий нерв находятся в одном влагалище и образуют сосудистый пучок шеи, кзади от которого лежит шейный отделсимпатического ствола. Грудино-ключично-сосцевидная мышца прикрывает общую сонную артерию спереди. Задняя поверхность правой ОСА прилежит к лестничным мышцам, а левой, кроме того, еще ик выступающему краю пищевода. На уровне верхнего края щитовидного хряща ОСА расширяется, образуя бифуркацию, и делится на
внутреннюю (ВСА) и наружную (НСА) сонные артерии. В некоторых случаях от бифуркации отходит восходящая артерия глотки. Деление ОСА может происходить на различных уровнях шеи — у ееоснования, на середине или выше щитовидного хряща. Уровень бифуркации крайне вариабелен: 1% — на уровне Сп, 16% — Сш, 66% — CIV, 16% — Cv, 1% — Cvr OCA до своего деления не отдает ни однойветви. Обычно артерия расширяется в области бифуркации в так называемую каротидную луковицу, которая распространяется на ВСА. В наружном слое луковицы располагаются чувствительные нервныеокончания, раздражение которых вызывает замедление работы сердца, снижение артериального давления, расширение периферических сосудов. Эта область называется синокаротидной рефлексогеннойзоной. Раздражение ее может наблюдаться при грубой пальпации сосуда на этом уровне, а также во время ангиографии (пункции артерии, параартериальном введении контрастирующего вещества).
Первый отрезок ВСА обычно проходит снаружи или снаружи и кзади от НСА, угол расхождения во многом определяется возрастом и длиной сосудов. Иногда эти сосуды расходятся в виде канделябра. Вскоре после бифуркации ВСА вновь приближается к НСА, идет рядом и перед вхождением в каротидный канал делает поворот медиально. В том случае, когда ВСА отходит кзадимедиально по отношениюк НСА, она затем делает петлю вокруг НСА. ВСА не дает ветвей до вхождения в полость черепа.
НСА после отхождения от общей сонной артерии направляется вверх и почти сразу начинает отдавать ветви. Затем она идет вдоль заднего края нижней челюсти и на уровне суставного отростка этой костиделится на две конечные ветви: поверхностную височную и внутреннюю челюстную артерии. Все ветви НСА делятся на следующие:
1) передние — a. thyreoidea superior, a. lingualis, a. maxillaris externa;
2) задние — a. sternoclaidomastoidea, a. occipitalis, a. auricularis posterior;
3) медиальные — a. pharingea ascendens;
4) конечные — a. temporalis superficialis, a. maxillaris interim.
Основное значение этих ветвей, с нейрохирургической точки зрения, состоит в том, что при окклюзии общей или внутренней сонной артерии на шее они могут принимать участие в коллатеральномкровоснабжении головного мозга.
2. Вертебралъно-базилярная система.
Подключичная артерия отходит слева непосредственно от дуги аорты, справа — от плечего-ловного ствола. Выходя из грудной полости через верхнее отверстие грудной клетки, подключичная артерияогибает купол плевры, располагаясь в межлестничном треугольнике позади передней лестничной мышцы. Затем артерия идет под ключицей, подходит к I ребру и перегибается через него. В подключичнойартерии различают три отдела: 1 — до входа ее в промежуток между лестничными мышцами, 2 — на протяжении межлестничного промежутка и 3 — от места выхода артерии из межлестничногопромежутка до нижнего края I ребра. В 1-м отделе отходят позвоночная артерия, внутренняя артерия молочной железы и щитовидно-шейный ствол, во 2-м — реберно-шейный ствол и в 3-м — поперечнаяартерия шеи.
Позвоночная артерия (ПА) является первой ветвью подключичной, хотя иногда отходит непосредственно от дуги аорты (4% случаев слева и очень редко справа). После отхождения от наивысшей точкиподключичной дуги или заднемедиальной части ее, ПА поднимается кпереди от лестничной мышцы, слегка извиваясь или делая S-образный изгиб (VI сегмент) при вхождении в отверстие поперечногоотростка CV| (90% случаев), реже Cv (5% случаев) и затем идет почти вертикально вверх через отверстия в поперечных отростках позвонков (V2 сегмент). Выйдя из отверстия Си, она поворачиваетлатерально и опять идет почти вертикально между аксисом и атлантом или поворачивает кнаружи перед вхождением в поперечный отросток атланта под углом 45°. Выйдя из отверстия в поперечномотростке атланта, сосуд идет назад
примерно на 1 см кзади от атланта, затем поворачивает медиально (петля атланта — V3 сегмент). Затем артерия отдает свои мышечные ветви, которые анастомозируют с веточками затылочной артерии, отходящей от НСА (затылочно-позвоночный анастомоз). Кзади и медиально от атлантоокципитального сочленения ПА проходит через атлантоокципитальную мембрану, V4 сегмент пронзает твердуюмозговую и арахноидальную оболочки.
Кроме затылочно-позвоночного анастомоза ПА формирует анастомозы с ветвями тиреоцер-викального и костоцервикального стволов. В среднем диаметр их составляет 3,5 мм (1,5—5 мм). Правая и леваяПА имеют одинаковый диаметр примерно в 25% случаев, обычно левая ПА шире правой. В 10% наблюдений отмечается маленький диаметр сосуда — его гипоплазия.
П. Интракраниальные сосуды
В области основания к мозгу подходят и сообщаются между собой все 4 снабжающие его кровью артериальные магистрали: передние — внутренние сонные и задние — позвоночные артерии.
Каротидная система (рис. 1.22).
ВСА входит в полость черепа через каротидное отверстие (foramen caroticum), которое находится кзади медиально от яремного отверстия (foramen jugularis). Она проходит через канал в височной кости(височная часть) и дважды в нем изгибается под углом 90° соответственно изгибам канала. Выйдя через рваное отверстие (foramen lacerum), идет на небольшом протяже-
Рис. 1.22. Анатомия сосудов каротидной системы (цит. по Э.3лотнику,1973).
а — боковая проекция: 1 — сифон внутренней сонной артерии; 2 — глазничная артерия; 3 — восходящая часть передней мозговой артерии (А2); 4 — дуга передней мозговой артерии вокруг колена мозолистого тела (A3); 5 — перикаллезнаяартерия; 6 — лобно-полюсная артерия; 7 — каллезо-маргинальная артерия; 8 — восходящие ветви средней мозговой артерии; 9 — задняя теменная артерия; 10 — ангулярная артерия; 11 — задняя височная артерия; 12 — передняя ворсинчатаяартерия; 13 — задняя соединительная артерия, б — прямая проекция: 1 — сифон внутренней сонной артерии; 2 — проксимальный отрезок передней мозговой артерии (А1); 3 — лобно-полюсная артерия; 4 — перикаллезная артерия; 5 —каллезо-маргинальная артерия; 6 — проксимальный отрезок средней мозговой артерии (Ml); 7 — задняя височная артерия; 8 — задняя теменная артерия; 9 — ангулярная артерия; 10 — лентикуло-стриарные артерии; 11 — передняя ворсинчатаяартерия.
нии почти вертикально в кавернозном синусе, расположенном кнаружи от основной кости (кавернозная часть — сегмент С5), затем поворачивает кпереди и кверху — сегмент С4, и затем опять кзади подпередним клиновидным отростком — сегмент СЗ. После этого ВСА покидает кавернозный синус и проходит ниже зрительного нерва в субарахноидальном цистернальном пространстве (цистернальнаячасть С2). Ее конечная часть — сегмент С1 — идет кзади и латерально до деления на среднюю и переднюю мозговые артерии. На ангиограммах в боковой проекции кавернозный и супраклиноидныйотрезки ВСА имеют форму S-образного изгиба, который называется сифоном ВСА. Различают двойной, ординарный и выпрямленный типы сифона. Наиболее часто встречается двойной сифон, прикотором, кроме заднего (соответствует повороту артерии в кавернозный синус) и переднего (место перехода субклиноидной части ВСА в суп-раклиноидную) дугообразных изгибов, имеется еще третийдугообразный изгиб кзади дисталь-ной части супраклиноидного отрезка. При ординарном сифоне третий изгиб отсутствует. Выпрямленный сифон представляет собой разновидность ординарного ихарактеризуется крутым подъемом кпереди супраклиноидного отрезка ВСА. Знание формы сифона необходимо для топической диагностики объемных образований параселлярной области.
Глазничная артерия начинается от сегмента С2—СЗ, задняя соединительная артерия (ЗСА) — от сегмента С1, за исключением 10% случаев, когда задние мозговые артерии (ЗМА) начинаютсянепосредственно от ВСА. Диаметр ВСА в среднем составляет 2,8-3,3 мм. Очень большое значение в диагностике придается глазничной артерии. Она обычно отходит от зад-немедиальной части переднейпетли каротидного сифона (сегменты С2, СЗ), поворачивает медиально от ВСА и входит в зрительный канал ниже и кнутри от зрительного нерва. Затем она направляется к верхнемедиальному отделуглазницы и, подойдя к блоку, делится на конечные ветви — надблоковую и надглазничную, которые имеют анастомозы с конечными ветвями НСА. Надо отметить, что имеется также анастомоз междусредней оболочечной артерией, точнее, ее ветвью — верхнечелюстной артерией — и ветвями глазничной артерии.
ЗСА начинается от задней стенки ВСА у места ее максимального изгиба кзади. Артерия идет кзади вдоль внутренней поверхности глазодвигательного нерва, затем медиально и впадает в заднюю мозговуюартерию (ЗМА). Таким образом, ЗСА является как бы анастомозом между ВСА и ЗМА. На своем пути ЗСА кровоснабжает лежащие рядом образования (перекрест зрительных нервов, зрительный тракт, серый бугор).
От задней поверхности ВСА несколько дистальнее ЗСА отходит передняя артерия сосудистого сплетения. Она идет кзади и вверх вдоль зрительного тракта, входит в боковой желудочек и разветвляется всосудистом сплетении его нижнего рога, кровоснабжает заднюю треть скорлупы, зрительный бугор и внутреннюю часть внутренней капсулы.
Средняя мозговая артерия (a. cerebri media) (СМА) отходит от сегмента С1 ВСА. Длина ее основного ствола равна в среднем 16,2 мм (5—24 мм), а диаметр — 2,7 мм (1,5—3,5 мм). Главный ствол (сегментMl) делится на 2 и более ветвей (до 5) — сегмент М2. Деление ВСА может быть рассыпным и магистральным. При магистральном типе деления ВСА продолжается в СМА, а ЗСА и передняя мозговаяартерия (ПМА) являются ветвями, при рассыпном — ветвление происходит в одной точке.
Веточки СМА сначала идут в том же направлении, что и основной ствол, особенно если он короткий, а затем в области островка отходят под острым углом вверх, некоторые веточки поворачиваютмедиально. Эта точка (сильвиева точка) обычно располагается на расстоянии 30 мм от внутренней поверхности чешуи височной кости.
В зависимости от направления ветвей и области их кровоснабжения различают группы передних ветвей, идущих к лобной области, верхних — поднимающихся к моторной и сенсорной областям, задних —продолжающих ход основного ствола и направляющихся к теменной
и затылочной долям и нижних — опоясывающих сверху вниз височную долю. Артерия крово-снабжает большую часть боковой поверхности полушария мозга и островок.
ПМА отходит от ВСА и идет вперед и медиально, проходя над хиазмой или зрительным трактом под передним продырявленным пространством, либо строго по прямой, либо делая изгиб (сегмент А1). Вэтом сегменте от нее отходит несколько перфорирующих ветвей, из которых наиболее крупной ветвью является гейбнеровская артерия (артерия Heubner). Передние перфорирующие артерии входят в мозгчерез переднее продырявленное пространство и питают головку хвостатого ядра, переднюю часть чечевицеобразного ядра, а также внутренней и наружной капсул. Изредка с одной стороны наблюдаетсягипоплазия (4% случаев) или аплазия (1% случаев), однако небольшая разница в диаметре между сторонами является правилом. В среднем две ПМА соединяются над зрительным перекрестом короткойпередней соединительной артерией (ПСА), длина которой в среднем составляет 2,6 мм. В 74% случаев ПСА одна, в 10% их две, реже наблюдается плексиформная или другие атипичные конфигурации. Очень редко имеется ее аплазия (0,3% случаев) либо гипоплазия (9% случаев). После отхождения передней соединительной артерии ПМА идет кпереди и вверх (А2) по медиальной поверхности полушарийнад мозолистым телом. Часть артерии, расположенная дистальнее изгиба мозолистого тела, носит название перикаллозной артерии. Она кровоснабжает медиальные отделы полушарий мозга, ядра большогомозга, мозолистое тело, частично наружную поверхность лобной и теменной долей.
Вертебрально-базилярная система (рис. 1.23).
ПА после вхождения в субарахноидальное пространство проходит между стволом мозга и скатом прямо или слегка извиваясь либо делая небольшую петлю кзади, и соединяется с противоположной ПАобычно у заднего края моста. Диаметр левой ПА составляет 2,2—2,3 мм, правой — 2,1 мм. Первая крупная ветвь ПА — задняя нижняя мозжечковая артерия. Она вариабельна по своему ходу и отхождению: в 10% наблюдений отходит от БА, в 10% случаев одна из артерий отсутствует. Задняя нижняя мозжечковая артерия идет проксимально к началу БА, отдавая веточки к стволу и мозжечку. Артерия отходитнад большим затылочным отверстием в 57% случаев, ниже — в 18% наблюдений, на уровне отверстия — в 4% случаев. Часто артерия делает «каудальную петлю», которая может достигать дуги атланта. Всреднем ее диаметр 1,2 мм.
Передняя спинальная артерия — небольшая ветвь, которая начинается в среднем на расстоянии 5,8 мм от соединения позвоночных артерий и достигает передней поверхности ствола. Ее диаметр составляет0,4—0,75 мм.
БА образуется при соединении позвоночных артерий и затем делится на две задние мозговые артерии. Она имеет длину в среднем 30 мм (24—41 мм) и диаметр в среднем 3 мм (2,5—3,5 мм). Обычно онапрямая, но иногда может слегка поворачивать в сторону (10—20%). Иногда она образует S-образный изгиб между скатом и стволом мозга.
Передняя нижняя мозжечковая артерия начинается от нижней трети БА примерно в половине наблюдений и от средней трети — в остальных случаях. Уходит к передненижним отделам мозжечка, кровоснабжая их. Обычно она намного тоньше, чем задняя нижняя мозжечковая артерия.
Верхняя мозжечковая артерия обычно отходит от конечной части БА. Первые несколько сантиметров она идет вперед и латерально, почти параллельно ЗМА. В среднем ее диаметр составляет 1,9 мм. Перегибается через ножки мозга и идет к верхней поверхности мозжечка, кровоснабжая ее.
ЗМА является анатомически и функционально пограничным сосудом между каротидной и вертебрально-базилярной системами. Фило- и онтогенетически она происходит из ВСА и только позжеразвивается ее связь с БА. Примерно у 10% взрослых ЗМА отходит от ВСА (так
Рис. 1.23. Анатомия вертебральных сосудов [Э.Злотник].
а — боковая проекция: 1 — позвоночная артерия; 2 — основная артерия; 3 — нижняя задняя мозжечковая артерия; 4 — верхняя мозжечковая артерия; 5 — задняя мозговая артерия; 6 — височно-затылочные ветви задней мозговой артерии; 7 —внутренние затылочные ветви задней мозговой артерии; 8 — внутренние ветви верхней мозжечковой артерии;
б — прямая проекция: 1 — позвоночная артерия; 2 — основная артерия; 3 — нижняя задняя мозжечковая артерия; 4 —верхняя мозжечковая артерия; 5 — задняя мозговая артерия; 6 — внутренние затылочные ветви задней мозговой артерии; 7 —височно-затылочные ветви задней мозговой артерии; 8 — наружная ветвь верхней мозжечковой артерии.
называемая задняя трифуркация ВСА). Ее первый сегмент (Р1) идет кпереди и кнаружи до ЗСА и затем поворачивает кзади вокруг ножки мозга (Р2), прилегая к краю тенториального отверстия, идет вверх илатерально по нижней поверхности затылочной доли, отдавая корковые периферические ветви, которые кровоснабжают затылочную и частично височную доли. Диаметр Р1 составляет 2,1 мм, Р2 — 2—3,3 мм. В начальном сегменте отдает перфорирующие ветви, которые, проходя через заднее продырявленное отверстие, кровоснабжают подкорковые узлы, ножки мозга, сосудистое сплетение III и боковыхжелудочков.
ЗСА имеет множество вариантов развития. В 22% наблюдений она гипопластична. В среднем ее длина 14 мм, диаметр — 1,2 мм. Примерно в 15% случаев отмечается аплазия с одной или обеих сторон. Онаидет кзади и слегка латерально от ЗМА к ВСА.
III. Коллатеральное кровоснабжение
Коллатеральные пути могут компенсировать уменьшенный поток, когда высокая степень стеноза или окклюзия развиваются в экстра- или интракраниальных артериях. Артерии, которые в норме непринимают участия в кровоснабжении мозга, могут включаться в кровоток и, реже, сосуды мозга могут включаться в кровоснабжение верхней конечности (обкрадывание из позвоночной, базилярной илисонной артерий при окклюзии проксимального участка подключичной артерии или плечеголовного ствола). Включение коллатеральных путей и направление кровотока зависит от градиента давления.
1. Глазничные коллатерали.
Глазничная артерия в норме кровоснабжается из ВСА, и ее конечные ветви анастомозируют с ипси- и контралатеральными НСА. Водораздел существует в области фронтоорбитального анастомоза. Пристенозе высокой степени ВСА проксимальнее места отхождения глазничной артерии водораздел смещается из экстра- в интраорбитальную область. Выраженное уменьшение потока в ВСА и НСА с однойстороны вызывает ретроградный кровоток через соответствующие орбитальные артерии из ветвей контралатеральной НСА (ветви артерии спинки носа и дистальные анастомозы в области надблоковыхартерий).
2. Затылочно-позвоночные анастомозы.
Анастомозы между ветвями затылочной артерии и мышечными ветвями V3 сегмента ПА формируют главную экстракраниальную связь между каротидной и вертебрально-базилярной системами. Припроксимальной окклюзии ПА перфузию дистального участка могут обеспечить затылочно-позвоночные анастомозы, также как при окклюзии ОСА и проксимальной НСА направление кровотока можетреверсировать.
3. Позвоночная артерия как коллатеральный путь.
Дефицит, вызываемый унилатеральной окклюзией ПА, компенсируется соответствующим увеличением потока через противоположную ПА. Реверсирование коллатерального потока через ПА может иметьместо при окклюзии проксимального участка подключичной артерии или брахиоцефального ствола. Поток из ПА или, реже, из БА носит название подключичного обкрадывания.
4. Артериальный круг большого мозга (виллизиев круг).
Этот анастомоз на основании мозга соединяет каротидные системы друг с другом и с вертебрально-базилярной системой через передние и задние соединительные артерии.
Артериальный круг — наиболее важная система уравнивания и распределения давления в артериях, снабжающих мозг. Она может быть чрезвычайно вариабельна и в 3—4% случаев незамкнута. Классическая ее конфигурация имеется лишь у 20% людей, в других случаях те или иные участки круга гипопластичны. При гипо- или аплазии одной из передних мозговых артерий кровоснабжение настороне недоразвития осуществляется за счет противоположной сонной артерии. Такой вариант развития, при котором одна ВСА питает кровью СМА и обе ПМА, называется передней трифуркацией ВСА.
Задние соединительные артерии наиболее вариабельны. Часто одна из артерий по диаметру меньше другой. Вариант развития, при котором ЗМА начинается непосредственно от ВСА, называется заднейтрифуркацией.
Наибольшего внимания заслуживают варианты развития, при которых отсутствует одна из соединительных артерий. В таких случаях артериальный круг большого мозга оказывается разомкнутым.
Вены головного мозга
Венозная система головного мозга представлена венами мозга и мозговыми синусами. Различают поверхностные и глубокие вены мозга (рис. 1.24).
Поверхностные вены расположены в извилинах коры мозга и впадают в венозные синусы. По распределению и количеству поверхностные вены мозга очень варьируются. Между ними имеется большоеколичество анастомозов. Поверхностные вены широко анастомозируют также с глубокими венами мозга посредством системы венозных каналов, проходящих через толщу белого и серого веществаполушарий мозга.
Рис. 1.24. Анатомия венозной системы головного мозга [Э.Злотник].
а — боковая проекция: 1 — внутренняя вена мозга; 2 — большая вена мозга (вена Галена); 3 — стриоталами-ческая вена; 4 — вена прозрачной перегородки; 5 — базальная вена; 6 — прямой синус; 7 — поверхностные восходящие вены; 8 —вена Тролара;
б — прямая проекция: 1 — внутренняя вена мозга; 2 — стриоталамическая вена; 3 — базальная вена; 4 — поверхностные восходящие вены; 5 — верхний саггитальный синус; 6 — поперечный синус.
Глубокие вены собирают кровь из глубоких структур мозга (подкорковые узлы, сосудистые сплетения и стенки желудочков). Они представлены веной прозрачной перегородки, конечной веной, расположенной между хвостатым ядром и зрительным бугром, и веной сосудистого сплетения. Эти три вены, сливаясь, образуют внутреннюю вену мозга, в которую затем впадает базальная вена, собирающая кровь из извилин основания мозга и дна III желудочка. При слиянии правой и левой внутренних вен образуется большая вена мозга (вена Галена), которая идет по внутренней поверхностиутолщения мозолистого тела и впадает в прямой синус.
Оттекающая по поверхностным и глубоким венам кровь собирается в венозных синусах мозга.
Венозные синусы представляют собой полости, расположенные в расщеплениях твердой мозговой оболочки. Перед впадением в синус вены на протяжении 1—2 см могут свободно лежать всубарахноидальном пространстве.
Синусы бывают непарными (расположенными по средней линии) и парными.
Среди непарных синусов различают следующие:
1. Верхний продольный синус, расположенный в месте прикрепления серповидного отростка к своду черепа. Он собирает кровь из поверхностных вен лобной, теменной и затылочной долей мозга ичастично из костей свода черепа.
2. Нижний продольный синус, идущий по нижнему краю серповидного отростка над мозолистым телом и впадающий в прямой синус, собирает кровь из мозолистого тела и внутренней поверхностиполушарий мозга.
3. Прямой синус, идущий по линии соединения серповидного отростка с наметом мозжечка. В него впадают большая мозговая вена и нижний продольный синус. Прямой синус, соединяясь с верхнимпродольным, образует в области затылочного бугра слияние (сток) синусов.
4. Затылочный синус, который начинается от внутреннего бугра затылочной кости и идет по линии прикрепления серповидного отростка мозжечка к затылочной кости. Этот синус на-
правляется к большому затылочному отверстию, обходя его справа и слева и впадая в сигмовидный синус.
Основными из парных синусов являются следующие:
1. Пещеристый синус, располагающийся на основании черепа по обеим сторонам от турецкого седла. Внутри синуса расположены внутренняя сонная артерия с симпатическим нервным сплетением иотводящий нерв. В верхней стенке синуса проходят глазодвигательный и блоко-видный нервы, в латеральной — I ветвь тройничного нерва. В пещеристый синус впадают верхняя и нижняя глазничныевены, которые через многочисленные анастомозы сообщаются с венами лица. Поэтому воспалительные заболевания мягких тканей лица могут распространяться в полость черепа.
2. Клиновидно-теменной синус, который начинается в теменной области и идет вниз вдоль заднего края малых крыльев основной кости. Он соединяет кавернозный синус с верхним продольным.
3. Верхний каменистый и нижний каменистый синусы, начинающиеся от кавернозного синуса. Идут соответственно по верхнему и нижнему краям пирамиды височной кости, затем впадают всигмовидный синус.
4. Поперечный синус, идущий от места слияния синусов латерально по линии прикрепления намета мозжечка к черепу в борозде поперечного синуса.
5. Сигмовидный синус, являющийся непосредственным продолжением поперечного. S-об-разно изгибаясь, этот синус располагается в борозде сигмовидного синуса височной кости и впадает в луковицувнутренней яремной вены, которая через яремное отверстие выходит из полости черепа.
Таким образом, основная масса венозной крови оттекает от головного мозга по внутренней яремной вене. Однако эта вена является не единственным путем оттока крови. Множество эмис-сариев в костяхчерепа и связь синусов твердой мозговой оболочки с диплоическими венами черепа обеспечивают отток крови в вены мягких тканей головы, т. е. в экстракраниальную венозную систему.
ЛИТЕРАТУРА
1. Авдеев Г.А. Томография черепа.— Л.: Медицина, 1965.— 196 с.
2. Альтгаузен Н.Н. Нейрорентгенология детского возраста.— М.: Медгиз, 1956.— 180 с.
3. Верещагин Н.В., Брагина Л.К., Вавилов СБ., Левина Г.Я. Компьютерная томография мозга.— М.: Медицина, 1986.— 251 с.
А. Дьяченко В.А. Рентгеноостеология.— М.: Медгиз, 1954.— 298 с.
5. Есиновская Г.Н. Краткое пособие по нейрорентгенологии.— М.: Медицина, 1965.— 270 с.
6. Злотник Э., Антонов И., Кастрицкая 3., Олешкевич Ф. Ангиографическая диагностика сосудистых поражений и опухолей головного мозга.— Минск: Беларусь, 1973.— 296 с.
7. Коваль Г.Ю. Клиническая рентгеноанатомия.— Киев: Здоровья, 1975.— 600 с.
8. Коновалов А.Н., Корниенко В.Н. Компьютерная томография в нейрохирургической клинике.— М.: Медицина, 1985.— 290 с.
9. Коновалов А. Н., Корниенко В.Н., Пронин И.И. Магнитно-резонансная томография в нейрохирургии.— М.: Видар, 1997.— 315 с.
10. Копылов М.Б. Основы рентгенодиагностики заболеваний головного мозга.— М.: Медицина, 1968.- 115 с.
11. Корниенко В.Я., Озерова В.И. Детская нейрорентгенология.— М.: Медицина, 1993.— 445 с.
12. Майкова-Строганова B.C., Рохлин Д. Г Костя и суставы в рентгеновском изображении.— Т. 1.— М.: Медгиз, 1957.- 475 с.
13. Общее руководство по радиологии / Под ред. П.Петтерссона.— Nicer, 1995.— 558 с.
14. Трофимова Т.Н.,Назинкина Ю.В.,Ананьева Н.И. и др.Нормальная лучевая анатомия головного мозга(КТ, МРТ, УЗИ).- СПб.: СПбМАПО, 2004.- 51 с.
15. Файзуллин М.Х. Рентгенодиагностика заболеваний и повреждений придаточных полостей носа.— М.: Медгиз, 1961.— 224 с.
16. Холин А. В., Ананьева Н.И., Карпенко А. К. Лучевая диагностика аномалий развития ЦНС— СПб.: СПбМАПО, 1998.- 46 с.
17. Шлифер И.Г. Рентгенодиагностика.— Т. 1.— Киев, 1941.— 544 с.
18. Higgins СВ., Hricak H., Helms C.A. Magnetic resonance imaging of the body. 2nd ed.— New York: Raven Press, 1992.- P. 355-381.
19. Pancoast H., Pendergrass E., Schaeffer J. The Head and Neck in Roentgen Diagnosis.— Philadelphia, 1940.-974 с
20. Robert R., John R. Clinical Magnetic Resonance Imagine.— Philadelphia, 1990.— P. 528-622.
21. Stark D.D., Bradley W.G. Magnetic resonance imaging. 2nd ed.— St. Louis: Mosby-Year Book, 1992.-P. 988-1165.
22. Taverns J., Wood E. Diagnostic Neuroradiology.—Baltimore, 1964.— 1960 p.